
Architectures for 

Distributed Systems
Chapter 2



Definitions

Software 
Architectures

System 
Architectures

2



Definitions

• Software Architectures

• describe the organization and interaction of software components

• focuses on logical organization of software (component 
interaction, etc.)

3



Definitions

• System Architectures

• describe the placement of software components on physical 
machines

• Centralized most components located on a single machine

• Decentralized most machines have approximately the same functionality

• Hybrid some combination.

4



Architectural Styles
(Software Architectures)

• An architectural style describes a particular way to configure a 
collection of components and connectors.

• Component - a module with well-defined interfaces; reusable, replaceable

• Connector - communication link between modules

5



Architectural Styles

• Architectures suitable for distributed systems:

• Layered architectures

• Object-based architectures

• Data-centered architectures

• Event-based architectures 

6



Layered architectures

7



Object based

Object based is less structured

component = object

connector = RPC or RMI

8



Data-Centered Architectures

• Main purpose: data access and update

• Processes interact by reading and modifying data in some shared 

repository (active or passive)

• Example: web-based distributed systems where communication 

is through web services

9



Event-based architectural

• Communication via event   

propagation, in dist. systems 

seen often in Publish/ Subscribe; 

e.g., register interest in market 

info; get email updates

• Decouples sender & receiver; 

asynchronous communication

Event-based arch.

supports several 

communication styles:

• Publish-subscribe

• Broadcast

• Point-to-point
10



Shared data-space architectural

Combination of data-centered and event based architectures

Processes communicate asynchronously

11



Distribution Transparency

• An important characteristic of software architectures in 

distributed systems is that they are designed to support 

distribution transparency.

• Transparency involves trade-offs

• Performance

• Fault tolerance

• Ease-of-programming

• Different distributed applications require different 

solutions/architectures 12



System Architectures for Distributed Systems

• Centralized: traditional client-server structure

• Vertical (or hierarchical) organization of communication and control 
paths (as in layered software architectures)

• Logical separation of functions into client (requesting process) and server
(responder)

• Decentralized: peer-to-peer

• Horizontal rather than hierarchical comm. and control 

• Communication paths are less structured; symmetric functionality 

• Hybrid: combine elements of C/S and P2P

• Edge-server systems

• Collaborative distributed systems.

• Classification of a system as centralized or decentralized refers to 
communication and control organization, primarily. 13



Traditional Client-Server

• Processes are divided into two groups (clients and servers).

• Synchronous communication: request-reply protocol

• In LANs, often implemented with a connectionless protocol

• In WANs, communication is typically connection-oriented TCP/IP 

• High likelihood of communication failures
14



C/S Architectures

Figure 2-3. General interaction between a client and a server.
15



Transmission Failures

• With connectionless transmissions, failure of any sort means no reply 

• Possibilities:

• Request message was lost

• Reply message was lost

• Server failed either before, during or after performing the service 

• Can the client tell which of the above errors took place?

16



Idempotency

• Typical response to lost request in connectionless communication:

re-transmission

• Consider effect of re-sending a message such as “Increment X by 
1000”

• If first message was acted on, now the operation has been performed 
twice

• Idempotent operations: can be performed multiple times without 
harm

• e.g., “Return current value of X”; check on availability of a product

• Non-idempotent: “increment X”, order a product 17



Layered (software) Architecture for 

Client-Server Systems

• User-interface level: GUI’s (usually) for interacting with end users

• Processing level: data processing applications – the core functionality

• Data level: interacts with data base or file system

• Data usually is persistent; exists even if no client is accessing it

• File or database system

18



Examples

• Web search engine

• Interface: type in a keyword string

• Processing level: processes to generate DB queries, rank replies, format 
response

• Data level: database of web pages

• Stock broker’s decision support system

• Interface: likely more complex than simple search 

• Processing: programs to analyze data; rely on statistics, AI perhaps, may 
require large simulations

• Data level: DB of financial information

19



Application Layering

Figure 2-4. The simplified organization of an Internet search 
engine into three different layers.

20



Multi-tiered architectures

• Layer and tier are roughly equivalent terms, but layer typically 

implies software and tier is more likely to refer to hardware.

• Two-tier and three-tier are the most common

21



Two-tiered C/S Architectures

• Server provides processing and data management; 

client provides simple graphical display (thin-client)

• Perceived performance loss at client

• Easier to manage, more reliable, client machines don’t need 

to be so large and powerful

• At the other extreme, all application processing and 

some data resides at the client (fat-client approach)

• reduces work load at server; more scalable

• harder to manage by system admin, less secure 22



Multitiered Architectures

Thin 

Client
Fat 

Client

Figure 2-5. Alternative client-server organizations (a)–(e). 23



Three-tiered Architectures

• In some applications servers may also need to be clients, leading to a 

three level architecture

• Distributed transaction processing 

• Web servers that interact with database servers

• Distribute functionality across three levels of machines instead of two.

24



Multi-tiered Architectures 

(3 Tier Architecture)

Figure 2-6. An example of a server acting as client. 25



Centralized vs Decentralized 

Architectures

• Traditional client-server architectures exhibit vertical 
distribution. Each level serves a different purpose in the 
system.

• Logically different components reside on different nodes

• Horizontal distribution (P2P): each node has roughly the 
same processing capabilities and stores/manages part of the 
total system data.

• Better load balancing, more resistant to denial-of-service attacks, 
harder to manage than C/S

• Communication & control is not hierarchical; all about equal
26



Peer-to-Peer

• Nodes act as both client and server; interaction is symmetric

• Each node acts as a server for part of the total system data

• Overlay networks connect nodes in the P2P system

• Nodes in the overlay use their own addressing system for storing 

and retrieving data in the system

• Nodes can route requests to locations that may not be known by 

the requester.
27



Overlay Networks

• Are logical or virtual networks, built on top of a physical network

• A link between two nodes in the overlay may consist of several physical 

links.

• Messages in the overlay are sent to logical addresses, not physical (IP) 

addresses

• Various approaches used to resolve logical addresses to physical.
28



Overlay Networks

• Each node in a P2P system knows how to contact several other nodes.

• The overlay network may be

• Structured (nodes and content are connected according to some 

design that simplifies later lookups)

• Unstructured (content is assigned to nodes without regard to the 

network topology. )

30



Structured P2P Architectures

• A common approach is to use a distributed hash table (DHT) to 

organize the nodes

• Traditional hash functions convert a key to a hash value, which can be 

used as an index into a hash table.

• Keys are unique – each represents an object to store in the table; e.g., at UAH, 

your A-number 

• The hash function value is used to insert an object in the hash table and to 

retrieve it.

31



Structured P2P Architectures

• In a DHT, data objects and nodes are each assigned a key 

which hashes to a random number from a very large identifier 

space (to ensure uniqueness)

• A mapping function assigns objects to nodes, based on the hash 

function value.

• A lookup, also based on hash function value, returns the 

network address of the node that stores the requested object.

32



Characteristics of DHT

• Scalable – to thousands, even millions of network nodes

• Search time increases more slowly than size; usually Ο(log(N))

• Fault tolerant – able to re-organize itself when nodes fail

• Decentralized – no central coordinator

33



Chord Routing Algorithm

Structured P2P

• Nodes are logically arranged in a circle

• Nodes and data items have m-bit identifiers (keys) from a 2m

namespace.

• e.g., a node’s key is a hash of its IP address and a file’s key might be 

the hash of its name or of its content or other unique key.

• The hash function is consistent; which means that keys are distributed 

evenly across the nodes, with high probability.

34



Inserting Items in the DHT

• A data item with key value k is mapped to the node with the smallest 

identifier id such that id ≥ k (mod 2m)

• This node is the successor of k, or succ(k)

• Modular arithmetic is used

35



Structured Peer-to-Peer Architectures

Figure 2-7. The mapping of 
data items onto nodes in 
Chord for m = 4

36



Finding Items in the DHT

• Each node in the network knows the location of some fraction of 

other nodes. 

• If the desired key is stored at one of these nodes, ask for it directly

• Otherwise, ask one of the nodes you know to look in its set of known 

nodes.

• The request will propagate through the overlay network until the desired 

key is located 

• Lookup time is O(log(N))

37



Joining & Leaving the Network

• Join

• Generate the node’s random identifier, id, using the distributed 
hash function

• Use the lookup function to locate succ(id)

• Contact succ(id) and its predecessor to insert self into ring.

• Assume data items from succ(id)

• Leave (normally)

• Notify predecessor & successor; 

• Shift data to succ(id)

• Leave (due to failure)

• Periodically, nodes can run “self-healing” algorithms 38



Content Addressable Networks

Structured P2P

• A d-dimensional space is partitioned among all nodes

• Each node & each data item is assigned a point in the space.

• Data lookup is equivalent to knowing region boundary points and the 

responsible node for each region.

39



Structured Peer-to-Peer Architectures

• Figure 2-8. (a) The mapping of 

data items onto nodes in CAN 

(Content Addressable Network). 

•2-dim space [0,1] x [0,1] is divided 

among 6 nodes

•Each node has an associated region

•Every data item in CAN will be 

assigned a unique point in space

•A node is responsible for all data 

elements mapped to its region

40



Structured Peer-to-Peer Architectures

• Figure 2-8. (b) Splitting a 

region when a node joins.

•To add a new region, 

split the region

•To remove an existing 

region, neighbor will 

take over

41



Summary

• Deterministic: If an item is in the system it will be found

• No need to know where an item is stored

• Lookup operations are relatively efficient

• DHT-based P2P systems scale well

42



Unstructured P2P

• Unstructured P2P organizes the overlay network  as a random 
graph.

• Each node knows about a subset of nodes, its “neighbors”.

• Neighbors are chosen in different ways: physically close nodes, nodes 
that joined at about the same time, etc. –

• Data items are randomly mapped to some node in the system & 
lookup is random, unlike the structured lookup in Chord.

43



Locating a Data Object by Flooding

• Send a request to all known neighbors

• If not found, neighbors forward the request to their neighbors

• Works well in small to medium sized networks, doesn’t 

scale well

• “Time-to-live” counter can be used to control number of 

hops

• Example system: Freenet (Freenet uses a caching system to 

improve performance)
44



Comparison

• Structured networks typically guarantee that if an object 

is in the network it will be located in a bounded amount 

of time – usually O(log(N))

• Unstructured networks offer no guarantees.

• For example, some will only forward search requests a 

specific number of hops

• Random graph approach means there may be loops

• Graph may become disconnected 

45



Superpeers

Figure 2-12. 

• Maintain indexes to some or all nodes in the system

• Supports resource discovery

• Act as servers to regular peer nodes, peers to other

superpeers

• Improve scalability by controlling floods

• Can also monitor state of network

46



Hybrid Architectures

• Combine client-server and P2P architectures

• Edge-server systems; e.g. ISPs, which act as servers to their clients, 
but cooperate with other edge servers to host shared content

• Collaborative distributed systems; e.g., BitTorrent, which supports 
parallel downloading and uploading of chunks of a file.  First, interact 
with C/S system, then operate in decentralized manner.

47



Edge-Server Systems

Figure 2-13. Viewing the Internet as consisting of a collection of edge servers.
48



Collaborative Distributed Systems 

BitTorrent

• Clients contact a global directory (Web server) to locate a 
.torrent file with the information needed to locate a tracker

• A server that can supply a list of active nodes that have chunks 
of the desired file.

• Using information from the tracker, clients can download the 
file in chunks from multiple sites in the network. 

• Clients must also provide file chunks to other users.
49



Collaborative Distributed Systems

• Figure 2-14. The principal working of BitTorrent [adapted with 

permission from Pouwelse et al. (2004)].

Tells how to locate the 

tracker for this file

Trackers know which nodes are active 

(downloading chunks of a file)

50



BitTorrent - Justification

• Designed to force users of file-sharing systems to participate 

in sharing.

• When a user downloads your file, he becomes in turn a server who 

can upload the file to other requesters.

• Share the load – doesn’t swamp your server

51



P2P vs Client/Server

• P2P computing allows end users to communicate without a 
dedicated server.

• Communication is still usually synchronous

• There is less likelihood of performance bottlenecks since 
communication is more distributed.  

• Data distribution leads to workload distribution.

• Resource discovery is more difficult than in centralized client-
server computing & look-up/retrieval is slower

• P2P can be more fault tolerant, more resistant to denial of 
service attacks because network content is distributed.

• Individual hosts may be unreliable, but overall, the system should 
maintain a consistent level of service

53



Architecture versus Middleware

• Where does middleware fit into an architecture?

• Middleware: the software layer between user applications and distributed 
platforms.

• Purpose: to provide distribution transparency

• Applications can access programs running on remote nodes without understanding 
the remote environment

54



Architecture versus Middleware

• Middleware may also have an architecture

• e.g., CORBA has an object-oriented style.

• Use of a specific architectural style can make it easier to develop 

applications, but it may also lead to a less flexible system.

• Possible solution: develop middleware that can be customized as 

needed for different applications.

55



Interceptors

56

Figure 2-15. Using 

interceptors to handle

remote-object 

invocations



General Approaches to Adaptive Software

Three basic approaches to adaptive software:

• Separation of concerns

• Computational reflection

• Component-based design

57


