Architectures for
Distributed Systems

Chapter 2

Definitions

Software System
Architectures Architectures

Definitions

® Software Architectures

® describe the organization and interaction of software components

® focuses on logical organization of software (component
Interaction, etc.)

Definitions

® System Architectures

® describe the placement of software components on physical
machines

® Centralized most components located on a single machine

® Decentralized most machines have approximately the same functionality

® Hybrid some combination.

Architectural Styles
(Software Architectures)

® An architectural style describes a particular way to configure a
collection of components and connectors.

® Component - a module with well-defined interfaces; reusable, replaceable
® Connector - communication link between modules

Architectural Styles

® Architectures suitable for distributed systems:

® Layered architectures

® Object-based architectures
® Data-centered architectures
® Event-based architectures

Layered architectures

Layer N
Layer N-1
Request ! T Response
flow § § flow
v |

Layer 2

Layer 1

Object based

Object Object

Method call

Object based is less structured
component = object
connector = RPC or RMI

Data-Centered Architectures

® Main purpose: data access and update

® Processes interact by reading and modifying data in some shared
repository (active or passive)

® Example: web-based distributed systems where communication
IS through web services

Event-based architectural

Component Component

Event delivery T T l
< Event bus >

T Publish

* Communication via event
propagation, in dist. systems Event-based arch.
seen often in Publish/ Subscribe; Component supports several

e.g., register interest in market communication styles:

info; get email updates * Publish-subscribe
» Broadcast

* Decouples sender & receiver, » Point-to-point
asynchronous communication

Shared data-space architectural

Component Component

Data delivery Publish

Shared (persistent) data space

Combination of data-centered and event based architectures

Processes communicate asynchronously

11

Distribution Transparency

® An important characteristic of software architectures in
distributed systems is that they are designed to support
distribution transparency.

® Transparency involves trade-offs
® Performance
® Fault tolerance

® Ease-of-programming

® Different distributed applications require different
solutions/architectures

12

System Architectures for Distributed Systems

Centralized: traditional client-server structure

® Vertical (or hierarchical) organization of communication and control
paths (as in layered software architectures)

® Logical separation of functions into client (requesting process) and server
(responder)

Decentralized: peer-to-peer

® Horizontal rather than hierarchical comm. and control

® Communication paths are less structured; symmetric functionality
Hybrid: combine elements of C/S and P2P

® Edge-server systems

® Collaborative distributed systems.

Classification of a system as centralized or decentralized refers to
communication and control organization, primarily.

13

Traditional Client-Server

Processes are divided into two groups (clients and servers).
Synchronous communication: request-reply protocol

In LANS, often implemented with a connectionless protocol

In WANS, communication is typically connection-oriented TCP/IP
® High likelihood of communication failures

14

C/S Architectures

. Wait for result
ClIENt s— s

Request

Provide service Time —>

Figure 2-3. General interaction between a client and a server.

15

Transmission Fatlures

® With connectionless transmissions, failure of any sort means no reply
® Possibilities:
® Request message was lost

® Reply message was lost
® Server failed either before, during or after performing the service

® Can the client tell which of the above errors took place?

16

|dempotency

® Typical response to lost request in connectionless communication:
re-transmission

® Consider effect of re-sending a message such as “Increment X by
10007

® If first message was acted on, now the operation has been performed
twice

® Idempotent operations: can be performed multiple times without
harm

® e.g., “Return current value of X”; check on availability of a product
® Non-idempotent: “increment X”, order a product 17

Layered (software) Architecture for
Client-Server Systems

® User-interface level: GUI’s (usually) for interacting with end users

® Processing level: data processing applications — the core functionality

® Data level: interacts with data base or file system
® Data usually is persistent; exists even if no client is accessing it

® File or database system

18

Examples

® Web search engine
® Interface: type in a keyword string

® Processing level: processes to generate DB queries, rank replies, format
response

® Data level: database of web pages

® Stock broker’s decision support system
® Interface: likely more complex than simple search

® Processing: programs to analyze data; rely on statistics, Al perhaps, may
require large simulations

® Data level: DB of financial information

19

Applicatio

User interface

HTML page
containing list

Keyword expression

HTML

Query

generator

generator |

Database queries

Database
with Web pages

Ranking
algorithm

n Layering

User-interface
level

Web page titles
with meta-information

Processing
Ranked list level
of page titles

Data level

Figure 2-4. The simplified organization of an Internet search
engine into three different layers.

20

Multi-tiered architectures

® Layer and tier are roughly equivalent terms, but layer typically
Implies software and tier is more likely to refer to hardware.

® Two-tier and three-tier are the most common

21

Two-tiered C/S Architectures

® Server provides processing and data management;
client provides simple graphical display (thin-client)

® Perceived performance loss at client

® Easier to manage, more reliable, client machines don’t need
to be so large and powerful

® At the other extreme, all application processing and
some data resides at the client (fat-client approach)

® reduces work load at server: more scalable

® harder to manage by system admin, less secure

22

User interfaggl

-

User interface

Application

Database

(@)

Thin

Multitiered Architectures

Client machine

User interface

User interface

Application

Database

User interface User interface
Application Application
Database
| ////’
___“-_‘¢‘_-- _,,’$
- -—" \\

Application “Application
Database Database
Server machine
(b) (c)

(d)

(e)
, Fat

Client *

Client

Figure 2-5. Alternative client-server organizations (a)—(e). 2

Three-tiered Architectures

® In some applications servers may also need to be clients, leading to a
three level architecture

® Distributed transaction processing

® Web servers that interact with database servers

® Distribute functionality across three levels of machines instead of two.

24

Multi-tiered Architectures
(3 Tier Architecture)

User interface Wait for result
(presentation) T\ TTTTTTTTTTTTTTTTTTTTTTTTTTg

Request
operation

Wait for data

Application
server
Request data Return data

Database
server
Time »

Figure 2-6. An example of a server acting as client.

25

Centralized vs Decentralized
Architectures

® Traditional client-server architectures exhibit vertical
distribution. Each level serves a different purpose in the
system.

® Logically different components reside on different nodes

® Horizontal distribution (P2P): each node has roughly the
same processing capabilities and stores/manages part of the
total system data.

® Better load balancing, more resistant to denial-of-service attacks,
harder to manage than C/S

® Communication & control is not hierarchical; all about equal

26

Peer-to-Peer

® Nodes act as both client and server; interaction is symmetric
® Each node acts as a server for part of the total system data

® Overlay networks connect nodes in the P2P system

® Nodes in the overlay use their own addressing system for storing
and retrieving data in the system

® Nodes can route requests to locations that may not be known by
the requester.

27

Overlay Networks

® Are logical or virtual networks, built on top of a physical network

® Alink between two nodes in the overlay may consist of several physical
links.

® Messages in the overlay are sent to logical addresses, not physical (IP)
addresses

® Various approaches used to resolve logical addresses to physical.

28

Overlay Networks

® Each node in a P2P system knows how to contact several other nodes.

® The overlay network may be

® Structured (nodes and content are connected according to some
design that simplifies later lookups)

® Unstructured (content is assigned to nodes without regard to the
network topology.)

30

Structured P2P Architectures

® A common approach is to use a distributed hash table (DHT) to
organize the nodes

® Traditional hash functions convert a key to a hash value, which can be
used as an index into a hash table.

® Keys are unigue — each represents an object to store in the table; e.g., at UAH,
your A-number

® The hash function value is used to insert an object in the hash table and to
retrieve it.

31

Structured P2P Architectures

® In a DHT, data objects and nodes are each assigned a key
which hashes to a random number from a very large identifier
space (to ensure uniqueness)

® A mapping function assigns objects to nodes, based on the hash
function value.

® Alookup, also based on hash function value, returns the
network address of the node that stores the requested object.

32

Characteristics of DHT

® Scalable — to thousands, even millions of network nodes

® Search time increases more slowly than size; usually O(log(N))

® Fault tolerant — able to re-organize itself when nodes fail

® Decentralized — no central coordinator

33

Chord Routing Algorithm
Structured P2P

® Nodes are logically arranged in a circle

® Nodes and data items have m-bit identifiers (keys) from a 2™
namespace.

® e.g., anode’s key is a hash of its IP address and a file’s key might be
the hash of its name or of its content or other unique key.

® The hash function is consistent; which means that keys are distributed
evenly across the nodes, with high probability.

34

Inserting Items In the DHT

® A data item with key value k is mapped to the node with the smallest
Identifier id suchthat id = k (mod 2™M)

® This node is the successor of k, or succ (k)

® Modular arithmetic iIs used

35

Structured Peer-to-Peer Architectures

Actual node
i 0

145 {13,14,15) {0,1} 72}

/i. ‘"'\
. %
- e

P .
’ \ / ‘
' [} ’ [
'] " '
. . ’
. . v ¢
L PO e

{8,9,10,11,12} {2,3,4}

~ Associated _
11} data keys 5

Y ¢) .
. . -~ -
~.-\‘ /--‘
-- i

it ‘

Figure 2-7. The mapping of 108 5871 (6
data items onto nodes in \ Y
Chord form=4 L9

36

Finding Items in the DHT

® Each node in the network knows the location of some fraction of
other nodes.

® If the desired key is stored at one of these nodes, ask for it directly

® Otherwise, ask one of the nodes you know to look in its set of known
nodes.

® The request will propagate through the overlay network until the desired
key is located

® Lookup time is O(log(N))

37

Joining & Leaving the Network

® Join

® Generate the node’s random identifier, id, using the distributed
hash function

® Use the lookup function to locate succ (id)
® Contact succ (1d) and its predecessor to insert self into ring.
® Assume data items from succ (id)
® Leave (normally)
® Notify predecessor & successor;
® Shift datato succ (id)
® Leave (due to failure)

® Periodically, nodes can run “self-healing” algorithms

38

Content Addressable Networks
Structured P2P

® A d-dimensional space is partitioned among all nodes
® Each node & each data item is assigned a point in the space.

® Data lookup Is equivalent to knowing region boundary points and the
responsible node for each region.

39

«2-dim space [0,1] x [0,1] is divided
among 6 nodes

*Each node has an associated region

*Every data item in CAN will be
assigned a unigue point in space

A node is responsible for all data
elements mapped to its region

® Figure 2-8. (a) The mapping of '

data items onto nodes in CAN
(Content Addressable Network).

Structured Peer-to-Peer Architectures

Keys associated with

0.1)

node at (0.6,0.7)
\ (1,1)

\ (0.9,0.9)
®
(0.2,0.8)
o
e (0.6,0.7)
Actual node * (0'960'6)
(0.2,0.3)
o
(0.7,0.2)
L

(1,0)
(@)

40

*To add a new region,
split the region

*To remove an existing
region, neighbor will
take over

® Figure 2-8. (b) Splitting a
region when a node joins.

Structured Peer-to-Peer Architectures

(0.9,0.9)
@
(0.2,0.8)
D
(0.6,0.7)
]
(0.9,0.6)
2]
(0.2,0.45)
(0.7,0.2)
(0.2,0.15) e

(b)

41

Summary

Deterministic: If an item is in the system it will be found
No need to know where an item is stored
Lookup operations are relatively efficient

DHT-based P2P systems scale well

42

Unstructured P2P

® Unstructured P2P organizes the overlay network as a random
graph.

® Each node knows about a subset of nodes, its “neighbors™.

® Neighbors are chosen in different ways: physically close nodes, nodes
that joined at about the same time, etc. —

® Data items are randomly mapped to some node in the system &
lookup is random, unlike the structured lookup in Chord.

43

Locating a Data Object by Flooding

® Send a request to all known neighbors

® If not found, neighbors forward the request to their neighbors

® Works well in small to medium sized networks, doesn’t
scale well

® “Time-to-live” counter can be used to control number of

hops

® Example system: Freenet (Freenet uses a caching system to
Improve performance)

44

Comparison

® Structured networks typically guarantee that if an object
IS In the network it will be located in a bounded amount
of time — usually O(log(N))

® Unstructured networks offer no guarantees.

® For example, some will only forward search requests a
specific number of hops

® Random graph approach means there may be loops

® Graph may become disconnected

45

Superpeers

- Maintain indexes to some or all nodes in the system

 Supports resource discovery

 Act as servers to regular peer nodes, peers to other
superpeers

 Improve scalability by controlling floods

 Can also monitor state of network

Regular peer

Superpeer

Superpeer
network

Figure 2-12.

46

Hybrid Architectures

® Combine client-server and P2P architectures

® Edge-server systems; e.g. ISPs, which act as servers to their clients,
but cooperate with other edge servers to host shared content

® Collaborative distributed systems; e.g., BitTorrent, which supports
parallel downloading and uploading of chunks of a file. First, interact
with C/S system, then operate in decentralized manner.

47

Edge-Server Systems

Client

ISP

Content provider

<

>

Edge server

<

>

ISP

Core Internet

<

> Enterprise network

Figure 2-13. Viewing the Internet as consisting of a collection of edge servers.

48

Collaborative Distributed Systems
BitTorrent

® Clients contact a global directory (Web server) to locate a
torrent file with the information needed to locate a tracker

® Aserver that can supply a list of active nodes that have chunks
of the desired file.

® Using information from the tracker, clients can download the
file in chunks from multiple sites in the network.

® Clients must also provide file chunks to other users.

49

Collaborative Distributed Systems

Trackers know which nodes are active

(downloading chunks of a file)
Tells how to locate the

- tracker for this file

Client node
K out of N nodes
Lookup(F) Node 1
. = . \ Node 2
A BitTorrent torrent file v List of_ nodes
Web page Ref. to for F Ref. to storing F }
file tracker
Web server server File server Tracker
Node N

® Figure 2-14. The principal working of BitTorrent [adapted with
permission from Pouwelse et al. (2004)].

BitTorrent - Justification

® Designed to force users of file-sharing systems to participate
In sharing.

® When a user downloads your file, he becomes in turn a server who
can upload the file to other requesters.

® Share the load — doesn’t swamp your server

51

P2P vs Client/Server

P2P computing allows end users to communicate without a
dedicated server.

Communication is still usually synchronous

There is less likelihood of performance bottlenecks since
communication is more distributed.

® Data distribution leads to workload distribution.

Resource discovery is more difficult than in centralized client-
server computing & look-up/retrieval is slower

P2P can be more fault tolerant, more resistant to denial of
service attacks because network content is distributed.

® Individual hosts may be unreliable, but overall, the system should
maintain a consistent level of service

53

Architecture versus Middleware

® Where does middleware fit into an architecture?

® Middleware: the software layer between user applications and distributed
platforms.

® Purpose: to provide distribution transparency

® Applications can access programs running on remote nodes without understanding
the remote environment

54

Architecture versus Middleware

® Middleware may also have an architecture
® e.g., CORBA has an object-oriented style.

® Use of a specific architectural style can make it easier to develop
applications, but it may also lead to a less flexible system.

® Possible solution: develop middleware that can be customized as
needed for different applications.

55

Intercepted call

N\
{

Request-level interceptor

(

1

Interceptors

— B.do_something(value)

Client application

Application stub

v

f

Message-level interceptor

\

— Nonintercepted call

1

invoke(B, &do_something, value)

|_{]rbject middleware

;
1
J

A

I

send([B, "do_something", value])

I

ocal OS5

. Toobject B

el

Figure 2-15. Using
interceptors to handle
remote-object
invocations

56

General Approaches to Adaptive Software

Three basic approaches to adaptive software:
® Separation of concerns
® Computational reflection

® Component-based design

57

