
Processes, Threads and

Virtualization
The role of processes in distributed systems

Introduction

• To be efficient, a client/server system can use asynchronous

communication to overlap communication latencies with local

processing.

• Structure processes with multiple threads

• Virtual machines make it possible for multiple servers to execute

securely on a single platform, and to migrate servers from one

platform to another.

• Process migration

2

Concurrency Transparency

• Traditionally, operating systems used the process concept to provide
concurrency transparency to executing processes.

• Virtual processors; hardware support

• Today, multithreading provides concurrency with less overhead (so
better performance)

• Also less transparency – application must provide memory protection for
threads.

3

Large Applications

• Early operating systems (e.g., UNIX)

• Supported large apps by supporting the development of several cooperating

programs via fork() system call (Parent process forks multiple child processes)

• Rely on IPC mechanisms to exchange info

• Pipes, message queues, shared memory

• Overhead: numerous context switches

• Possible benefits of multiple threads vs multiple programs (processes)

• Less communication overhead

• Easier to handle asynchronous events

• Easier to handle priority scheduling
4

Thread

• Conceptually, one of concurrent execution paths contained in
a process.

• If two processes want to share data or other resources, the
OS must be involved.

• Overhead: system calls, mode switches, context switches, extra
execution time.

• Two threads in a single process can share global data
automatically – as easily as two functions in a single process

5

Threads

• Multithreading is useful in the following kinds of situations:

• To allow a program to do I/O and computations at the “same” time:
one thread blocks to wait for input, others can continue to execute

• To allow separate threads in a program to be distributed across
several processors in a shared memory multiprocessor

• To allow a large application to be structured as cooperating threads,
rather than cooperating processes (avoiding excess context switches)

• Multithreading also can simplify program development
(divide-and-conquer)

6

Overhead Due to Process Switching

Figure 3-1. Context switching as the result of IPC. 7

Save CPU context

Modify data in MMU registers

Invalidate TLB entries

. . .

Restore CPU context

Modify data in MMU

registers

. . .

Thread Implementation

• User-level

• Less overhead; faster execution

• Kernel-level

• Support multiprocessing

• Independently schedulable by OS

• Can continue to run if one thread blocks on a system call.

• Light weight processes (LWP)

• Example: in Sun’s Solaris OS

8

User-level Threads

• User-level threads are created by calling functions in a user-level
library.

• Less overhead; faster execution

• The advantage here is that they are even more efficient

• no mode switches are involved in thread creation or switching.

• The process that uses user-level threads appears (to the OS) to be a
single threaded process

• there is no way to distribute the threads in a multiprocessor or block only
part of the process.

• Blocking system call will immediately block the entire process 9

Kernel-level Threads

• The kernel is aware of the threads and schedules them
independently as if they were processes.

• One thread may block for I/O, or some other event, while other
threads in the process continue to run.

• Unfortunately, there is a high price to pay: every thread operation
will have to be carried out by the kernel.

• requiring a system call. Switching thread contexts

• most of the performance benefits of using threads instead of processes
then disappears

10

Hybrid Threads –Lightweight Processes (LWP)

• LWP is similar to a kernel-level thread:

• It runs in the context of a regular process

• The process can have several LWPs created by the kernel in response to a system

call.

• User level threads are created by calls to the user-level thread package.

• The thread package also has a scheduling algorithm for threads,

runnable by LWPs.
11

Thread Implementation

Figure 3-2. Combining kernel-level lightweight processes and user-level threads.
12

Hybrid threads – LWP

• The OS schedules an LWP which uses the thread scheduler to
decide which thread to run.

• Thread synchronization and context switching are done at the
user level; LWP is not involved and continues to run.

• If a thread makes a blocking system call control passes to the
OS (mode switch)

• The OS can schedule another LWP or let the existing LWP continue to
execute, in which case it will look for another thread to run.

13

• Most thread operations (create, destroy, synchronize) are done at

the user level

• Blocking system calls need not block the whole process

• Applications only deal with user-level threads

• LWPs can be scheduled in parallel on the separate processing

elements of a multiprocessor. 14

Advantages of the hybrid approach

Threads in Distributed Systems

• Threads gain much of their power by sharing an address space

• But … no sharing in distributed systems

• However, multithreading can be used to improve the performance

of individual nodes in a distributed system.

• A process, running on a single machine; e.g., a client or a server, can be

multithreaded to improve performance

15

Multithreaded Clients

• Main advantage: hide network latency

• Addresses problems such as delays in downloading documents from web

• Hide latency by starting several threads

• One to download text (display as it arrives)

• Others to download photographs, figures, etc.

• All threads execute simple blocking system calls; easy to program

this model

• Browser displays results as they arrive.
16

Multithreaded Clients

• Even better: if servers are replicated, the multiple threads may be

sent to separate sites.

• Data can be downloaded in several parallel streams, improving

performance even more.

• Designate a thread in the client to handle and display each incoming data

stream.

17

Multithreaded Servers

• Improve performance, provide better structuring

• Consider what a server does:

• Wait for a request

• Execute request (may require blocking I/O)

• Send reply to client

• Several models for programming the server

• Single threaded

• Multi-threaded

• Finite-state machine
18

Threads in Distributed Systems - Servers

• A single-threaded (iterative) server processes one request at a
time – other requests must wait.

• Possible solution: create (fork) a new server process for a new
request.

• This approach creates performance problems

• Creating a new server thread is much more efficient.

• Processing is overlapped and shared data structures can be accessed
without extra context switches.

19

Multithreaded Servers

Figure 3-3. A multithreaded server organized in a dispatcher/worker model.
20

Finite-state machine

• The file server is single threaded but doesn’t block for I/O
operations

• Instead, save state of current request, switch to a new task – client
request or disk reply.

• Outline of operation:

• Get request, process until blocking I/O is needed

• Save state of current request, start I/O, get next task

• If task = completed I/O, resume process waiting on that I/O using saved
state, else service a new request if there is one.

21

Virtualization

• Multiprogrammed operating systems provide the illusion of simultaneous
execution through resource virtualization

• Use software to make it look like concurrent processes are executing simultaneously

• Virtual machine technology creates separate virtual machines, capable of
supporting multiple instances of different operating systems.

22

Benefits

• Hardware changes faster than software

• Suppose you want to run an existing application and the OS that supports it on a

new computer: the VMM layer makes it possible to do so.

• Compromised systems (internal failure or external attack) are isolated.

• Run multiple different operating systems at the same time

23

Role of Virtualization in Distributed Systems

• Portability of virtual machines supports moving (or copying)

servers to new computers

• Multiple servers can safely share a single computer

• Portability and security (isolation) are the critical characteristics.

24

• Unprivileged machine instructions: available to any program

• Privileged instructions: hardware interface for the OS/other privileged software

• System calls: interface to the operating system for applications & library functions

• API: An OS interface through library function calls from applications.

25

Interfaces Offered by Computer Systems

Two Ways to Virtualize

26

Process Virtual Machine:

program is compiled to

intermediate code,

executed by a runtime system

Virtual Machine Monitor:

software layer mimics the

instruction set; supports an

OS and its applications

Processes in a Distributed System
Clients, Servers, and Code Migration

27

Another Distributed System Definition

“Distributed systems are networked computers in which the
different components of a software application program run
on different computers on a network, but all of the distributed
components work cooperatively as if all were running on the
same machine.”

28

Networked User Interfaces

29

Figure 3-8. (a) A networked application with its own protocol

Networked User Interfaces

30

Figure 3-8. (b) A general solution to allow access to remote applications.

Client Side Software

• Manages user interface

• Parts of the processing and data (maybe)

• Support for distribution transparency

• Access transparency: Client side stubs hide communication and

hardware details.

• Location, migration, and relocation transparency rely on naming

systems, among other techniques

• Failure transparency (e.g., client middleware can make multiple

attempts to connect to a server)
31

Client-Side Software for Replication Transparency

• Figure 3-10. Transparent replication of a server using a client-side solution.

32
Here, the client application is shielded from replication issues by client-side

software that takes a single request and turns it into multiple requests; takes

multiple responses and turn them into a single response.

Servers

• Processes that implement a service for a collection of clients

• Passive: servers wait until a request arrives

• Server Design:

• Iterative servers: handles one request at a time, returns response to client

• Concurrent servers: act as a central receiving point

• Multithreaded servers versus forking a new process

33

Contacting the Server

• Client requests are sent to an end point, or port, at the server

machine.

• How are port numbers located?

• Global: e.g; 21 for FTP requests and 80 for HTTP

• Or, contact a daemon on a server machine that runs multiple services.

• For services that don’t need to run continuously, superservers can

listen to several ports, create servers as needed.

34

Client-to-server binding using a daemon

35

Client-to-server binding using a superserver

36

How a server can be interrupted

• For example, consider a user who has just decided to upload a

huge file to an FTP server.

• Then, suddenly realizing that it is the wrong file, he wants to

interrupt the server to cancel further data transmission.

• Solutions

• The user exit the client application, immediately restart it

• Send out-of-band data

37

Stateful vs. Stateless

• Some servers keep no information about clients (Stateless)

• Example: a web server which honors HTTP requests doesn’t need to remember which
clients have contacted it.

• Stateful servers retain information about clients and their current state, e.g.,
updating file.

• Loss of state may lead to permanent loss of information.

38

Server Clusters

• A server cluster is a collection of machines, connected through a network,

where each machine runs one or more services.

• Often clustered on a LAN

• Three tiered structure is common

• Client requests are routed to one of the servers through a front-end switch

39

• Figure 3-12. The general organization of a three-tiered server cluster.
40

Three tiered server cluster

• Tier 1: the switch (access/replication transparency)

• Tier 2: the servers

• Some server clusters may need special compute-intensive machines in this

tier to process data

• Tier 3: data-processing servers, e.g. file servers and database

servers

• For other applications, the major part of the workload may be here 41

Server Clusters

• In some clusters, all server machines run the same services

• In others, different machines provide different services

• May benefit from load balancing

• One proposed use for virtual machines

42

43Figure 3-13. The principle of TCP handoff

Server Clusters

Distributed Servers

44

Figure 3-14. Route optimization in a distributed server.

Code Migration: Overview

• Instead of distributed system communication based
on passing data, why not pass code instead?

• Load balancing

• Reduce communication overhead

• Parallelism; e.g., mobile agents for web searches

• Flexibility – configure system architectures dynamically

45

Code Migration: Overview

• Process migration may require moving the entire
process state;

• Early DS’s focused on process migration & tried to
provide it transparently

46

Client-Server Examples

• Example 1: (Send Client code to Server)

• Server manages a huge database. If a client application needs

to perform many database operations, it may be better to ship

part of the client application to the server and send only the

results across the network.

• Example 2: (Send Server code to Client)

• In many interactive DB applications, clients need to fill in

forms that are subsequently translated into a series of DB

operations. Reduce network traffic, improve service. Security

issues?
47

Examples

• Mobile agents: independent code modules that can migrate from node to
node in a network and interact with local hosts; e.g. to conduct a search at
several sites in parallel

• Dynamic configuration of DS: Instead of pre-installing client-side
software to support remote server access, download it dynamically from
the server when it is needed.

48

Code Migration

Figure 3-17. The principle of dynamically configuring a client to communicate
to a server. The client first fetches the necessary software, and then invokes
the server. 49

A Model for Code Migration (1)
as described in Fuggetta et. al. 1998

• Three components of a process:

• Code segment: the executable instructions

• Resource segment: references to external resources (files, printers, other

processes, etc.)

• Execution segment: contains the current state

• Private data, stack, program counter, other registers, etc. – data that will be saved

during a context switch.

50

A Model for Code Migration (2)

• Weak mobility: transfer the code segment and possibly some
initialization data.

• Process can only migrate before it begins to run, or perhaps at a few
intermediate points.

• Requirements: portable code

• Example: Java applets

• Strong mobility: transfer code segment and execution segment.

• Processes can migrate after they have already started to execute

• Much more difficult

51

A Model for Code Migration (3)

• Sender-initiated: initiated at the “home” of the migrating code

• e.g., upload code to a compute server; launch a mobile agent, send
code to a DB

• Receiver-initiated: host machine downloads code to be
executed locally

• e.g., applets, download client code, etc.

• If used for load balancing, sender-initiated migration lets busy
sites send work elsewhere; receiver initiated lets idle machines
volunteer to assume excess work. 52

Security in Code Migration

• Code executing remotely may have access to remote host’s
resources, so it should be trusted.

• For example, code uploaded to a server might be able to corrupt its disk

• Question: should migrated code execute in the context of an
existing process or as a separate process created at the target
machine?

• Java applets execute in the context of the target machine’s browser

• Efficiency (no need to create new address space) versus potential for
mistakes or security violations in the executing process.

53

Cloning v Process Migration

• Cloned processes can be created by a fork instruction (as in UNIX) and
executed at a remote site

• Migration by cloning improves distribution transparency because it is
based on a familiar programming model

• UNIX has a clone() function that connects to a remote host, copies the
process over, executes a fork() & exec() to start it.

54

Models for Code Migration

Figure 3-18. Alternatives for code migration.
55

Resource Migration

• Resources are bound to processes

• By identifier: resource reference that identifies a particular object; e.g. a
URL, an IP address, local port numbers.

• By value: reference to a resource that can be replaced by another resource
with the same “value”, for example, a standard library.

• By type: reference to a resource by a type; e.g., a printer or a monitor

• Code migration cannot change (weaken) the way processes are
bound to resources.

56

Resource Migration

• How resources are bound to machines:

• Unattached: easy to move; my own files

• Fastened: harder/more expensive to move; a large DB or a Web site

• Fixed: can’t be moved; local devices

• Global references: meaningful across the system

• Rather than move fastened or fixed resources, try to establish a global
reference

57

Migration and Local Resources

Figure 3-19. Actions to be taken with respect to the references to
local resources when migrating code to another machine.

58

Migration in Heterogeneous Systems

• Different computers, different operating systems – migrated code is not

compatible

• Can be addressed by providing process virtual machines:

• Directly interpret the migrated code at the host site (as with scripting languages)

• Interpret intermediate code generated by a compiler (as with Java)

59

Migrating Virtual Machines

• A virtual machine encapsulates an entire computing environment.

• If properly implemented, the VM provides strong mobility since
local resources may be part of the migrated environment

• “Freeze” an environment (temporarily stop executing processes) &
move entire state to another machine

• e.g. In a server cluster, migrated environments support maintenance
activities such as replacing a machine.

60

Migration of Virtual Machines

• Example: real-time (“live”) migration of a virtualized operating

system with all its running services among machines in a server

cluster on a local area network.

• Problems:

• Migrating the memory image (page tables, in-memory pages, etc.)

• Migrating bindings to local resources

61

Memory Migration in Virtual Machines

• Three possible approaches

• Pre-copy: push memory pages to the new machine and resend the

ones that are later modified during the migration process.

• Stop-and-copy: pause the current virtual machine; migrate memory,

and start the new virtual machine.

• Let the new virtual machine pull in new pages as needed, using

demand paging

62

Resource Migration in a Cluster

• Migrating local resource bindings is simplified in this example because we

assume all machines are located on the same LAN.

• “Announce” new address to clients

• If data storage is located in a third tier, migration of file bindings is trivial.

63

