Processes, Threads and
Virtualization

The role of processes in distributed systems



Introduction

® To be efficient, a client/server system can use asynchronous
communication to overlap communication latencies with local
processing.

® Structure processes with multiple threads

® Virtual machines make it possible for multiple servers to execute
securely on a single platform, and to migrate servers from one
platform to another.

® Process migration



Concurrency Transparency

® Traditionally, operating systems used the process concept to provide
concurrency transparency to executing processes.

® Virtual processors; hardware support

® Today, multithreading provides concurrency with less overhead (so
better performance)

® Also less transparency — application must provide memory protection for
threads.



Large Applications

® Early operating systems (e.g., UNIX)
® Supported large apps by supporting the development of several cooperating
programs via fork( ) system call (Parent process forks multiple child processes)
® Rely on IPC mechanisms to exchange info
® Pipes, message queues, shared memory
® Overhead: numerous context switches

® Possible benefits of multiple threads vs multiple programs (processes)
® Less communication overhead
® Easier to handle asynchronous events
® Easier to handle priority scheduling




Thread

® Conceptually, one of concurrent execution paths contained in
a process.

® If two processes want to share data or other resources, the
OS must be involved.

® Overhead: system calls, mode switches, context switches, extra
execution time.

® Two threads in a single process can share global data
automatically — as easily as two functions in a single process




Threads

® Multithreading is useful in the following kinds of situations:

® To allow a program to do I/O and computations at the “same” time:
one thread blocks to wait for input, others can continue to execute

® To allow separate threads in a program to be distributed across
several processors in a shared memory multiprocessor

® To allow a large application to be structured as cooperating threads,
rather than cooperating processes (avoiding excess context switches)

® Multithreading also can simplify program development
(divide-and-conquer)



Overhead Due to Process Switching

Process A Process B

S1: Switch from user space

to kernel space \\\l\ ;/ | S3: Switch from kernel
i space to user space

Restore CPU context
Save CPU context Operating system Modify data in MMU
Modify data in MMU registers N registers

Invalidate TLB entries S2: Switch context from

process A to process B

Figure 3-1. Context switching as the result of IPC.



Thread Implementation

® User-level
® Less overhead; faster execution

® Kernel-level
® Support multiprocessing
® Independently schedulable by OS
® Can continue to run if one thread blocks on a system call.

® Light weight processes (LWP)

® Example: in Sun’s Solaris OS



User-level Threads

® User-level threads are created by calling functions in a user-level
library.

® Less overhead; faster execution

® The advantage here Is that they are even more efficient
® no mode switches are involved in thread creation or switching.

® The process that uses user-level threads appears (to the OS) to be a
single threaded process

® there is no way to distribute the threads in a multiprocessor or block only
part of the process.

® Blocking system call will immediately block the entire process 0



Kernel-level Threads

® The kernel is aware of the threads and schedules them
Independently as If they were processes.

® One thread may block for 1/0O, or some other event, while other
threads In the process continue to run.

® Unfortunately, there is a high price to pay: every thread operation
will have to be carried out by the kernel.

® requiring a system call. Switching thread contexts

® most of the performance benefits of using threads instead of processes
then disappears



Hybrid Threads —Lightweight Processes (LWP)

® LWP is similar to a kernel-level thread:
® It runs in the context of a regular process

® The process can have several LWPs created by the kernel in response to a system
call.

® User level threads are created by calls to the user-level thread package.

® The thread package also has a scheduling algorithm for threads,
runnable by LWPs.
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Thread Implementation

Thread state \
User space b o . | |
| Thread
- L Lightweight process
Kernel space /
LWP executing a thread

Figure 3-2. Combining kernel-level lightweight processes and user-level threads.
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Hybrid threads — LWP

® The OS schedules an LWP which uses the thread scheduler to
decide which thread to run.

® Thread synchronization and context switching are done at the
user level; LWP Is not involved and continues to run.

® If a thread makes a blocking system call control passes to the
OS (mode switch)

® The OS can schedule another LWP or let the existing LWP continue to
execute, in which case it will look for another thread to run.
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Advantages of the hybrid approach

® Most thread operations (create, destroy, synchronize) are done at
the user level

® Blocking system calls need not block the whole process
® Applications only deal with user-level threads

® LWPs can be scheduled in parallel on the separate processing
elements of a multiprocessor. 14



Threads In Distributed Systems

® Threads gain much of their power by sharing an address space

® But ... no sharing in distributed systems

® However, multithreading can be used to improve the performance
of individual nodes in a distributed system.

® A process, running on a single machine; e.g., a client or a server, can be
multithreaded to improve performance
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Multithreaded Clients

® Main advantage: hide network latency

® Addresses problems such as delays in downloading documents from web

® Hide latency by starting several threads
® One to download text (display as it arrives)

® Others to download photographs, figures, etc.

® All threads execute simple blocking system calls; easy to program
this model

® Browser displays results as they arrive.
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Multithreaded Clients

® Even better: if servers are replicated, the multiple threads may be
sent to separate sites.

® Data can be downloaded in several parallel streams, improving
performance even more.

® Designate a thread in the client to handle and display each incoming data
stream.
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Multithreaded Servers

® Improve performance, provide better structuring

® Consider what a server does:
® Wait for a request
® Execute request (may require blocking 1/0O)
® Send reply to client

® Several models for programming the server
® Single threaded
® Multi-threaded
® Finite-state machine
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Threads in Distributed Systems - Servers

® Asingle-threaded (iterative) server processes one request at a
time — other requests must walit.

® Possible solution: create (fork) a new server process for a new
request.

® This approach creates performance problems

® Creating a new server thread is much more efficient.

® Processing iIs overlapped and shared data structures can be accessed
without extra context switches.
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Multithreaded Servers

. Request dispatched
Dispatcher thread to a worker thread - Server
¢ /
\ / :
4?_‘ | —1 Worker thread

A

Request coming in
from the network

Operating system

Figure 3-3. A multithreaded server organized in a dispatcher/worker model.
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Finite-state machine

® The file server 1s single threaded but doesn’t block for I/0
operations

® Instead, save state of current request, switch to a new task — client
request or disk reply.

® Outline of operation:
® Get request, process until blocking 1/0O is needed
® Save state of current request, start I/O, get next task

® If task = completed 1/O, resume process waiting on that 1/O using saved
state, else service a new request if there is one.
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Virtualization

® Multiprogrammed operating systems provide the illusion of simultaneous
execution through resource virtualization

® Use software to make it look like concurrent processes are executing simultaneously

® Virtual machine technology creates separate virtual machines, capable of
supporting multiple instances of different operating systems.
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Benefits

® Hardware changes faster than software

® Suppose you want to run an existing application and the OS that supports it on a
new computer: the VMM layer makes it possible to do so.

® Compromised systems (internal failure or external attack) are isolated.

® Run multiple different operating systems at the same time
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Role of Virtualization in Distributed Systems

® Portability of virtual machines supports moving (or copying)
servers to new computers

® Multiple servers can safely share a single computer

® Portability and security (isolation) are the critical characteristics.

24



Interfaces Offered by Computer Systems

Unprivileged machine instructions: available to any program

Privileged instructions: hardware interface for the OS/other privileged software

System calls: interface to the operating system for applications & library functions

API: An OS interface through library function calls from applications.

Library functions Application
- |
Library
System calls
|
Privileged | Operating system P—
nstructions ™ [ £ instructions

Hardware -




Two Ways to Virtualize

Application

Runtime system

Operating system

Applications

L

Operating system

Virtual machine monitor

L | | |

Hardware

(a)

Process Virtual Machine:
program is compiled to
Intermediate code,

executed by aruntime system

Hardware

(b)

Virtual Machine Monitor:
software layer mimics the
Instruction set; supports an
OS and its applications
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Processes In a Distributed System
Clients, Servers, and Code Migration



Another Distributed System Definition

“Distributed systems are networked computers in which the
different components of a software application program run
on different computers on a network, but all of the distributed
components work cooperatively as If all were running on the
same machine.”
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Networked User Interfaces

Client machine Server machine

Application |« —— » Application

5 Application- X

i specific ,
Middleware protocol Middleware
Local OS Local OS

Network
(@)

Figure 3-8. (a) A networked application with its own protocol




Networked User Interfaces

Client machine Server machine
Appl. Appl.
, Application- |
' A independent —A
Middleware g protocol i Middleware
Local OS Local OS

Network
(b)

Figure 3-8. (b) A general solution to allow access to remote applications.




Client Side Software

® Manages user interface
® Parts of the processing and data (maybe)
® Support for distribution transparency

® Access transparency: Client side stubs hide communication and
hardware details.

® Location, migration, and relocation transparency rely on naming
systems, among other techniques

® Failure transparency (e.g., client middleware can make multiple
attempts to connect to a server)
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Client-Side Software for Replication Transparency

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl

I

i Z ol

Client side handles

request replication Replicated request

® Figure 3-10. Transparent replication of a server using a client-side solution.

Here, the client application is shielded from replication issues by client-side
software that takes a single request and turns it into multiple requests; takes
multiple responses and turn them into a single response.




Servers

® Processes that implement a service for a collection of clients
® Passive: servers wait until a request arrives

® Server Design:
® lterative servers: handles one request at a time, returns response to client

® Concurrent servers: act as a central receiving point
® Multithreaded servers versus forking a new process
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Contacting the Server

® Client requests are sent to an end point, or port, at the server
machine.

® How are port numbers located?
® Global: e.g; 21 for FTP requests and 80 for HTTP

® Or, contact a daemon on a server machine that runs multiple services.

® For services that don’t need to run continuously, SUperservers can
listen to several ports, create servers as needed.
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Client-to-server binding using a daemon
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Client-to-server binding using a superserver
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How a server can be interrupted

® For example, consider a user who has just decided to upload a
huge file to an FTP server.

® Then, suddenly realizing that it is the wrong file, he wants to
Interrupt the server to cancel further data transmission.

® Solutions

® The user exit the client application, immediately restart it

® Send out-of-band data
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Stateful vs. Stateless

® Some servers keep no information about clients (Stateless)

® Example: a web server which honors HTTP requests doesn’t need to remember which
clients have contacted it.

® Stateful servers retain information about clients and their current state, e.g.,
updating file.

® Loss of state may lead to permanent loss of information.

38



Server Clusters

® Aserver cluster is a collection of machines, connected through a network,
where each machine runs one or more services.

¢ Often clustered on a LAN

® Three tiered structure 1S common

® Client requests are routed to one of the servers through a front-end switch
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® Figure 3-12. The general organization of a three-tiered server cluster.
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Three tiered server cluster

® Tier 1: the switch (access/replication transparency)

® Tier 2: the servers

® Some server clusters may need special compute-intensive machines in this
tier to process data

® Tier 3: data-processing servers, e.g. file servers and database
Servers

® For other applications, the major part of the workload may be here “



Server Clusters

® In some clusters, all server machines run the same services

® In others, different machines provide different services
® May benefit from load balancing

® One proposed use for virtual machines
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Figure 3-13. The principle of TCP handoff
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Distributed Servers
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Figure 3-14. Route optimization in a distributed server.



Code Migration: Overview

® Instead of distributed system communication based
on passing data, why not pass code instead?

® Load balancing

® Reduce communication overhead

® Parallelism; e.g., mobile agents for web searches
-lexibility — configure system architectures dynamically
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Code Migration: Overview

® Process migration may require moving the entire
process state;

® Early DS’s focused on process migration & tried to
provide it transparently
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Client-Server Examples

® Example 1: (Send Client code to Server)

® Server manages a huge database. If a client application needs
to perform many database operations, it may be better to ship
part of the client application to the server and send only the
results across the network.

® Example 2: (Send Server code to Client)

® In many interactive DB applications, clients need to fill in
forms that are subsequently translated into a series of DB
operations. Reduce network traffic, Iimprove service. Security
Issues?
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Examples

® Mobile agents: independent code modules that can migrate from node to
node in a network and interact with local hosts; e.g. to conduct a search at
several sites in parallel

® Dynamic configuration of DS: Instead of pre-installing client-side
software to support remote server access, download it dynamically from
the server when it is needed.
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Code Migration

2. Client and server

. communicate
Client / Server

<
<{—

, » 1. Client fetches code
Service-specific
client-side code

Code repository

Fi%ure 3-17. The principle of dynamically configurin? a client to communicate
tﬁ a server. The client first fetches the necessary software, and then invokes
e server.



A Model for Code Migration (1)

as described in Fuggetta et. al. 1998

® Three components of a process:
® Code segment: the executable instructions

® Resource segment: references to external resources (files, printers, other
processes, etc.)

® Execution segment: contains the current state

® Private data, stack, program counter, other registers, etc. — data that will be saved
during a context switch.
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A Model for Code Migration (2)

® Weak mobility: transfer the code segment and possibly some
Initialization data.

® Process can only migrate before it begins to run, or perhaps at a few
Intermediate points.

® Requirements: portable code
® Example: Java applets

® Processes can migrate after they have already started to execute
® Much more difficult

® Strong mobility: transfer code segment and execution segment.
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A Model for Code Migration (3)

® Sender-initiated: initiated at the “home” of the migrating code

® e.g., upload code to a compute server; launch a mobile agent, send
code toa DB

® Receiver-initiated: host machine downloads code to be
executed locally

® e.g., applets, download client code, etc.

® If used for load balancing, sender-initiated migration lets busy
sites send work elsewhere: receiver initiated lets idle machines
volunteer to assume excess work. 52



Security In Code Migration

® Code executing remotely may have access to remote host’s
resources, so It should be trusted.

® For example, code uploaded to a server might be able to corrupt its disk

® Question: should migrated code execute In the context of an
exIsting process or as a separate process created at the target
machine?

® Java applets execute in the context of the target machine’s browser

® Efficiency (no need to create new address space) versus potential for
mistakes or security violations in the executing process.
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Cloning v Process Migration

® Cloned processes can be created by a fork instruction (as in UNIX) and
executed at a remote site

® Migration by cloning improves distribution transparency because it is
based on a familiar programming model

® UNIX has a clone() function that connects to a remote host, copies the
process over, executes a fork() & exec() to start it.
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Models for Code Migration
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Figure 3-18. Alternatives for code migration.



Resource Migration

® Resources are bound to processes

® By identifier: resource reference that identifies a particular object; e.g. a
URL, an IP address, local port numbers.

® By value: reference to a resource that can be replaced by another resource
with the same “value”, for example, a standard library.

® By type: reference to a resource by a type; e.g., a printer or a monitor

® Code migration cannot change (weaken) the way processes are
bound to resources.
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Resource Migration

® How resources are bound to machines:
® Unattached: easy to move; my own files
® Fastened: harder/more expensive to move; a large DB or a Web site

® Fixed: can’t be moved; local devices

® Global references: meaningful across the system

® Rather than move fastened or fixed resources, try to establish a global
reference
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Migration and Local Resources

Resource-to-machine binding

Unattached Fastened Fixed
Process- | By identifier MV (or GR) GR (or MV) GR
to-resource | By value CP (or MV,GR) GR (or CP) GR
binding | By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)

GR
MV
CP
RB

Figure 3-19. Actions to be taken with respect to the references to
local resources when migrating code to another machine.

Establish a global systemwide reference
Move the resource

Copy the value of the resource

Rebind process to locally-available resource
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Migration In Heterogeneous Systems

® Different computers, different operating systems — migrated code is not
compatible

® Can be addressed by providing process virtual machines:

® Directly interpret the migrated code at the host site (as with scripting languages)

® Interpret intermediate code generated by a compiler (as with Java)
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Migrating Virtual Machines

® Avirtual machine encapsulates an entire computing environment.

® If properly implemented, the VM provides strong mobility since
local resources may be part of the migrated environment

® “Freeze” an environment (temporarily stop executing processes) &
move entire state to another machine

® e.g. In aserver cluster, migrated environments support maintenance
activities such as replacing a machine.
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Migration of Virtual Machines

® Example: real-time (“live’) migration of a virtualized operating
system with all its running services among machines in a server
cluster on a local area network.

® Problems:
® Migrating the memory image (page tables, in-memory pages, etc.)

® Migrating bindings to local resources
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Memory Migration In Virtual Machines

® Three possible approaches

® Pre-copy: push memory pages to the new machine and resend the
ones that are later modified during the migration process.

® Stop-and-copy: pause the current virtual machine; migrate memory,
and start the new virtual machine.

® Let the new virtual machine pull in new pages as needed, using
demand paging
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Resource Migration in a Cluster

® Migrating local resource bindings is simplified in this example because we
assume all machines are located on the same LAN.

® “Announce” new address to clients

® |If data storage is located in a third tier, migration of file bindings is trivial.
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