Processes, Threads and
Virtualization

The role of processes in distributed systems

Introduction

® To be efficient, a client/server system can use asynchronous
communication to overlap communication latencies with local
processing.

® Structure processes with multiple threads

® Virtual machines make it possible for multiple servers to execute
securely on a single platform, and to migrate servers from one
platform to another.

® Process migration

Concurrency Transparency

® Traditionally, operating systems used the process concept to provide
concurrency transparency to executing processes.

® Virtual processors; hardware support

® Today, multithreading provides concurrency with less overhead (so
better performance)

® Also less transparency — application must provide memory protection for
threads.

Large Applications

® Early operating systems (e.g., UNIX)
® Supported large apps by supporting the development of several cooperating
programs via fork() system call (Parent process forks multiple child processes)
® Rely on IPC mechanisms to exchange info
® Pipes, message queues, shared memory
® Overhead: numerous context switches

® Possible benefits of multiple threads vs multiple programs (processes)
® Less communication overhead
® Easier to handle asynchronous events
® Easier to handle priority scheduling

Thread

® Conceptually, one of concurrent execution paths contained in
a process.

® If two processes want to share data or other resources, the
OS must be involved.

® Overhead: system calls, mode switches, context switches, extra
execution time.

® Two threads in a single process can share global data
automatically — as easily as two functions in a single process

Threads

® Multithreading is useful in the following kinds of situations:

® To allow a program to do I/O and computations at the “same” time:
one thread blocks to wait for input, others can continue to execute

® To allow separate threads in a program to be distributed across
several processors in a shared memory multiprocessor

® To allow a large application to be structured as cooperating threads,
rather than cooperating processes (avoiding excess context switches)

® Multithreading also can simplify program development
(divide-and-conquer)

Overhead Due to Process Switching

Process A Process B

S1: Switch from user space

to kernel space \\\l\ ;/ | S3: Switch from kernel
i space to user space

Restore CPU context
Save CPU context Operating system Modify data in MMU
Modify data in MMU registers N registers

Invalidate TLB entries S2: Switch context from

process A to process B

Figure 3-1. Context switching as the result of IPC.

Thread Implementation

® User-level
® Less overhead; faster execution

® Kernel-level
® Support multiprocessing
® Independently schedulable by OS
® Can continue to run if one thread blocks on a system call.

® Light weight processes (LWP)

® Example: in Sun’s Solaris OS

User-level Threads

® User-level threads are created by calling functions in a user-level
library.

® Less overhead; faster execution

® The advantage here Is that they are even more efficient
® no mode switches are involved in thread creation or switching.

® The process that uses user-level threads appears (to the OS) to be a
single threaded process

® there is no way to distribute the threads in a multiprocessor or block only
part of the process.

® Blocking system call will immediately block the entire process 0

Kernel-level Threads

® The kernel is aware of the threads and schedules them
Independently as If they were processes.

® One thread may block for 1/0O, or some other event, while other
threads In the process continue to run.

® Unfortunately, there is a high price to pay: every thread operation
will have to be carried out by the kernel.

® requiring a system call. Switching thread contexts

® most of the performance benefits of using threads instead of processes
then disappears

Hybrid Threads —Lightweight Processes (LWP)

® LWP is similar to a kernel-level thread:
® It runs in the context of a regular process

® The process can have several LWPs created by the kernel in response to a system
call.

® User level threads are created by calls to the user-level thread package.

® The thread package also has a scheduling algorithm for threads,
runnable by LWPs.

11

Thread Implementation

Thread state \
User space b o . | |
| Thread
- L Lightweight process
Kernel space /
LWP executing a thread

Figure 3-2. Combining kernel-level lightweight processes and user-level threads.

12

Hybrid threads — LWP

® The OS schedules an LWP which uses the thread scheduler to
decide which thread to run.

® Thread synchronization and context switching are done at the
user level; LWP Is not involved and continues to run.

® If a thread makes a blocking system call control passes to the
OS (mode switch)

® The OS can schedule another LWP or let the existing LWP continue to
execute, in which case it will look for another thread to run.

13

Advantages of the hybrid approach

® Most thread operations (create, destroy, synchronize) are done at
the user level

® Blocking system calls need not block the whole process
® Applications only deal with user-level threads

® LWPs can be scheduled in parallel on the separate processing
elements of a multiprocessor. 14

Threads In Distributed Systems

® Threads gain much of their power by sharing an address space

® But ... no sharing in distributed systems

® However, multithreading can be used to improve the performance
of individual nodes in a distributed system.

® A process, running on a single machine; e.g., a client or a server, can be
multithreaded to improve performance

15

Multithreaded Clients

® Main advantage: hide network latency

® Addresses problems such as delays in downloading documents from web

® Hide latency by starting several threads
® One to download text (display as it arrives)

® Others to download photographs, figures, etc.

® All threads execute simple blocking system calls; easy to program
this model

® Browser displays results as they arrive.

16

Multithreaded Clients

® Even better: if servers are replicated, the multiple threads may be
sent to separate sites.

® Data can be downloaded in several parallel streams, improving
performance even more.

® Designate a thread in the client to handle and display each incoming data
stream.

17

Multithreaded Servers

® Improve performance, provide better structuring

® Consider what a server does:
® Wait for a request
® Execute request (may require blocking 1/0O)
® Send reply to client

® Several models for programming the server
® Single threaded
® Multi-threaded
® Finite-state machine

18

Threads in Distributed Systems - Servers

® Asingle-threaded (iterative) server processes one request at a
time — other requests must walit.

® Possible solution: create (fork) a new server process for a new
request.

® This approach creates performance problems

® Creating a new server thread is much more efficient.

® Processing iIs overlapped and shared data structures can be accessed
without extra context switches.

19

Multithreaded Servers

. Request dispatched
Dispatcher thread to a worker thread - Server
¢ /
\ / :
4?_‘ | —1 Worker thread

A

Request coming in
from the network

Operating system

Figure 3-3. A multithreaded server organized in a dispatcher/worker model.

20

Finite-state machine

® The file server 1s single threaded but doesn’t block for I/0
operations

® Instead, save state of current request, switch to a new task — client
request or disk reply.

® Outline of operation:
® Get request, process until blocking 1/0O is needed
® Save state of current request, start I/O, get next task

® If task = completed 1/O, resume process waiting on that 1/O using saved
state, else service a new request if there is one.

21

Virtualization

® Multiprogrammed operating systems provide the illusion of simultaneous
execution through resource virtualization

® Use software to make it look like concurrent processes are executing simultaneously

® Virtual machine technology creates separate virtual machines, capable of
supporting multiple instances of different operating systems.

22

Benefits

® Hardware changes faster than software

® Suppose you want to run an existing application and the OS that supports it on a
new computer: the VMM layer makes it possible to do so.

® Compromised systems (internal failure or external attack) are isolated.

® Run multiple different operating systems at the same time

23

Role of Virtualization in Distributed Systems

® Portability of virtual machines supports moving (or copying)
servers to new computers

® Multiple servers can safely share a single computer

® Portability and security (isolation) are the critical characteristics.

24

Interfaces Offered by Computer Systems

Unprivileged machine instructions: available to any program

Privileged instructions: hardware interface for the OS/other privileged software

System calls: interface to the operating system for applications & library functions

API: An OS interface through library function calls from applications.

Library functions Application
- |
Library
System calls
|
Privileged | Operating system P—
nstructions ™ [£ instructions

Hardware -

Two Ways to Virtualize

Application

Runtime system

Operating system

Applications

L

Operating system

Virtual machine monitor

L | | |

Hardware

(a)

Process Virtual Machine:
program is compiled to
Intermediate code,

executed by aruntime system

Hardware

(b)

Virtual Machine Monitor:
software layer mimics the
Instruction set; supports an
OS and its applications

26

Processes In a Distributed System
Clients, Servers, and Code Migration

Another Distributed System Definition

“Distributed systems are networked computers in which the
different components of a software application program run
on different computers on a network, but all of the distributed
components work cooperatively as If all were running on the
same machine.”

28

Networked User Interfaces

Client machine Server machine

Application |« —— » Application

5 Application- X

i specific ,
Middleware protocol Middleware
Local OS Local OS

Network
(@)

Figure 3-8. (a) A networked application with its own protocol

Networked User Interfaces

Client machine Server machine
Appl. Appl.
, Application- |
' A independent —A
Middleware g protocol i Middleware
Local OS Local OS

Network
(b)

Figure 3-8. (b) A general solution to allow access to remote applications.

Client Side Software

® Manages user interface
® Parts of the processing and data (maybe)
® Support for distribution transparency

® Access transparency: Client side stubs hide communication and
hardware details.

® Location, migration, and relocation transparency rely on naming
systems, among other techniques

® Failure transparency (e.g., client middleware can make multiple
attempts to connect to a server)

31

Client-Side Software for Replication Transparency

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl

I

i Z ol

Client side handles

request replication Replicated request

® Figure 3-10. Transparent replication of a server using a client-side solution.

Here, the client application is shielded from replication issues by client-side
software that takes a single request and turns it into multiple requests; takes
multiple responses and turn them into a single response.

Servers

® Processes that implement a service for a collection of clients
® Passive: servers wait until a request arrives

® Server Design:
® lterative servers: handles one request at a time, returns response to client

® Concurrent servers: act as a central receiving point
® Multithreaded servers versus forking a new process

33

Contacting the Server

® Client requests are sent to an end point, or port, at the server
machine.

® How are port numbers located?
® Global: e.g; 21 for FTP requests and 80 for HTTP

® Or, contact a daemon on a server machine that runs multiple services.

® For services that don’t need to run continuously, SUperservers can
listen to several ports, create servers as needed.

34

Client-to-server binding using a daemon

Client machine

Client

4,..
[—

1

. Ask for
end point

(a)

Server machine

2. Request
service SBRET \>

Daemon |

Register
end point

~~End-point
table

35

Client-to-server binding using a superserver

Client machine

Server machine

Client

4__

2. Continue

service

1. Request

service

Actual

It
server
Super- [~
server

(b)

Create
server for
requested
service

36

How a server can be interrupted

® For example, consider a user who has just decided to upload a
huge file to an FTP server.

® Then, suddenly realizing that it is the wrong file, he wants to
Interrupt the server to cancel further data transmission.

® Solutions

® The user exit the client application, immediately restart it

® Send out-of-band data

37

Stateful vs. Stateless

® Some servers keep no information about clients (Stateless)

® Example: a web server which honors HTTP requests doesn’t need to remember which
clients have contacted it.

® Stateful servers retain information about clients and their current state, e.g.,
updating file.

® Loss of state may lead to permanent loss of information.

38

Server Clusters

® Aserver cluster is a collection of machines, connected through a network,
where each machine runs one or more services.

¢ Often clustered on a LAN

® Three tiered structure 1S common

® Client requests are routed to one of the servers through a front-end switch

39

Logical switch
(possibly multiple)

Client requests

Dispatched
request
) [

Application/compute servers

First tier

® Figure 3-12. The general organization of a three-tiered server cluster.

~

>

Distributed
file/database
system

Second tier

Third tier

40

Three tiered server cluster

® Tier 1: the switch (access/replication transparency)

® Tier 2: the servers

® Some server clusters may need special compute-intensive machines in this
tier to process data

® Tier 3: data-processing servers, e.g. file servers and database
Servers

® For other applications, the major part of the workload may be here “

Server Clusters

® In some clusters, all server machines run the same services

® In others, different machines provide different services
® May benefit from load balancing

® One proposed use for virtual machines

42

Logically a
single TCP
connection

Server Clusters

Response

Server

Client

Request
Request 1

» Switch | (handed off)

Server

Figure 3-13. The principle of TCP handoff

43

Distributed Servers

Distributed server X

Believes server Client 1 Knows that Cient 1
has address HA believes it is X Pl 'é """ “
. . erver 1 i
Believes itis A'?P _ : :
connectedto X | [Top ‘Access point l
. with address CA1 : :
Believes location MIPvE I I
of X is CA1 ' ' I
P ' >] I
I. 1 |
\ Internet 1 .
1
: .
) 1 1
Believes server Client 2 : Server 2 :
has address HA ' I
T 1 1
Believes itis A'?P \[] :
connected to X TCP - l
| Access point , :
Believes location M”?‘"'E with address CA2 :
1
of X is CA2 P V] | i
1
Knows that Cient 2 : I
believes it is X . A

Figure 3-14. Route optimization in a distributed server.

Code Migration: Overview

® Instead of distributed system communication based
on passing data, why not pass code instead?

® Load balancing

® Reduce communication overhead

® Parallelism; e.g., mobile agents for web searches
-lexibility — configure system architectures dynamically

45

Code Migration: Overview

® Process migration may require moving the entire
process state;

® Early DS’s focused on process migration & tried to
provide it transparently

46

Client-Server Examples

® Example 1: (Send Client code to Server)

® Server manages a huge database. If a client application needs
to perform many database operations, it may be better to ship
part of the client application to the server and send only the
results across the network.

® Example 2: (Send Server code to Client)

® In many interactive DB applications, clients need to fill in
forms that are subsequently translated into a series of DB
operations. Reduce network traffic, Iimprove service. Security
Issues?

47

Examples

® Mobile agents: independent code modules that can migrate from node to
node in a network and interact with local hosts; e.g. to conduct a search at
several sites in parallel

® Dynamic configuration of DS: Instead of pre-installing client-side
software to support remote server access, download it dynamically from
the server when it is needed.

48

Code Migration

2. Client and server

. communicate
Client / Server

<
<{—

, » 1. Client fetches code
Service-specific
client-side code

Code repository

Fi%ure 3-17. The principle of dynamically configurin? a client to communicate
tﬁ a server. The client first fetches the necessary software, and then invokes
e server.

A Model for Code Migration (1)

as described in Fuggetta et. al. 1998

® Three components of a process:
® Code segment: the executable instructions

® Resource segment: references to external resources (files, printers, other
processes, etc.)

® Execution segment: contains the current state

® Private data, stack, program counter, other registers, etc. — data that will be saved
during a context switch.

50

A Model for Code Migration (2)

® Weak mobility: transfer the code segment and possibly some
Initialization data.

® Process can only migrate before it begins to run, or perhaps at a few
Intermediate points.

® Requirements: portable code
® Example: Java applets

® Processes can migrate after they have already started to execute
® Much more difficult

® Strong mobility: transfer code segment and execution segment.

51

A Model for Code Migration (3)

® Sender-initiated: initiated at the “home” of the migrating code

® e.g., upload code to a compute server; launch a mobile agent, send
code toa DB

® Receiver-initiated: host machine downloads code to be
executed locally

® e.g., applets, download client code, etc.

® If used for load balancing, sender-initiated migration lets busy
sites send work elsewhere: receiver initiated lets idle machines
volunteer to assume excess work. 52

Security In Code Migration

® Code executing remotely may have access to remote host’s
resources, so It should be trusted.

® For example, code uploaded to a server might be able to corrupt its disk

® Question: should migrated code execute In the context of an
exIsting process or as a separate process created at the target
machine?

® Java applets execute in the context of the target machine’s browser

® Efficiency (no need to create new address space) versus potential for
mistakes or security violations in the executing process.

53

Cloning v Process Migration

® Cloned processes can be created by a fork instruction (as in UNIX) and
executed at a remote site

® Migration by cloning improves distribution transparency because it is
based on a familiar programming model

® UNIX has a clone() function that connects to a remote host, copies the
process over, executes a fork() & exec() to start it.

54

Models for Code Migration

Weak mobility

Mobility mechanism

Strong mobility

Execute at
Sender-initiated — target process
mobility ~~_ Execute in
separate process
Execute at
Receiver-initiated — target process
oy ~~~_Execute in
separate process
Migrate process
Sender-initiated _—
mobility e

Clone process

Migrate process
Receiver-initiated / g P

mobility —s

Clone process

55

Figure 3-18. Alternatives for code migration.

Resource Migration

® Resources are bound to processes

® By identifier: resource reference that identifies a particular object; e.g. a
URL, an IP address, local port numbers.

® By value: reference to a resource that can be replaced by another resource
with the same “value”, for example, a standard library.

® By type: reference to a resource by a type; e.g., a printer or a monitor

® Code migration cannot change (weaken) the way processes are
bound to resources.

56

Resource Migration

® How resources are bound to machines:
® Unattached: easy to move; my own files
® Fastened: harder/more expensive to move; a large DB or a Web site

® Fixed: can’t be moved; local devices

® Global references: meaningful across the system

® Rather than move fastened or fixed resources, try to establish a global
reference

57

Migration and Local Resources

Resource-to-machine binding

Unattached Fastened Fixed
Process- | By identifier MV (or GR) GR (or MV) GR
to-resource | By value CP (or MV,GR) GR (or CP) GR
binding | By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)

GR
MV
CP
RB

Figure 3-19. Actions to be taken with respect to the references to
local resources when migrating code to another machine.

Establish a global systemwide reference
Move the resource

Copy the value of the resource

Rebind process to locally-available resource

58

Migration In Heterogeneous Systems

® Different computers, different operating systems — migrated code is not
compatible

® Can be addressed by providing process virtual machines:

® Directly interpret the migrated code at the host site (as with scripting languages)

® Interpret intermediate code generated by a compiler (as with Java)

59

Migrating Virtual Machines

® Avirtual machine encapsulates an entire computing environment.

® If properly implemented, the VM provides strong mobility since
local resources may be part of the migrated environment

® “Freeze” an environment (temporarily stop executing processes) &
move entire state to another machine

® e.g. In aserver cluster, migrated environments support maintenance
activities such as replacing a machine.

60

Migration of Virtual Machines

® Example: real-time (“live’) migration of a virtualized operating
system with all its running services among machines in a server
cluster on a local area network.

® Problems:
® Migrating the memory image (page tables, in-memory pages, etc.)

® Migrating bindings to local resources

61

Memory Migration In Virtual Machines

® Three possible approaches

® Pre-copy: push memory pages to the new machine and resend the
ones that are later modified during the migration process.

® Stop-and-copy: pause the current virtual machine; migrate memory,
and start the new virtual machine.

® Let the new virtual machine pull in new pages as needed, using
demand paging

62

Resource Migration in a Cluster

® Migrating local resource bindings is simplified in this example because we
assume all machines are located on the same LAN.

® “Announce” new address to clients

® |If data storage is located in a third tier, migration of file bindings is trivial.

63

