
Chapter 4: Communication

Introduction

• In a distributed system, processes run on different machines.

• Processes can only exchange information through message passing.

• harder to program than shared memory communication

• Successful distributed systems depend on communication models that hide or
simplify message passing

Overview

•Message-Passing Protocols

• OSI reference model

• TCP/IP

•Higher level communication models

• Remote Procedure Call (RPC)

• Message-Oriented Middleware (time permitting)

• Data Streaming (time permitting)

Introduction

•A communication network provides data exchange between two (or more) end

points.

• In a computer network, the end points of the data exchange are computers and/or

terminals. (nodes, sites, hosts, etc., …)

Circuit Switching vs Packet Switching

•Circuit switching is connection-oriented (think traditional telephone system)

• Establish a dedicated path between hosts

• Data can flow continuously over the connection

• Packet switching divides messages into fixed size units (packets) which are
routed through the network individually.

• different packets in the same message may follow different routes.

Protocols

•A protocol is a set of rules that defines how two entities interact.

• For example: HTTP, FTP, TCP/IP

• Layered protocols have a hierarchical organization

•Conceptually, layer n on one host talks directly to layer n on the other
host, but in fact the data must pass through all layers on both machines.

Open Systems Interconnection Reference Model

(OSI)

•Supports communication between open systems

•Divides issues into 7 levels (layers) from most concrete to most

abstract

•Each layer provides an interface (set of operations) to the layer

immediately above

•Defines functionality – not specific protocols

Layered Protocols (1)

Figure 4-1. Layers, interfaces, and protocols
in the OSI model.

High level 7

Create message, 6 

string of bits

Establish Comm. 5

Create packets 4

Network routing 3

Add header/footer tag

+ checksum 2

Transmit bits via 1

comm. medium (e.g.

Copper, Fiber,

wireless)

Figure 4-2. A typical message as it appears on the network

Lower-level Protocols

•Physical: standardizes electrical, mechanical, and

signaling interfaces; e.g.,

• # of volts that signal 0 and 1 bits

• # of bits/sec transmitted

• Plug size and shape, # of pins, etc.

•Data Link: provides low-level error checking

•Appends start/stop bits to a frame

•Computes and checks checksums

•Network: routing (generally based on IP)

• IP packets need no setup

• Each packet in a message is routed independently of the others

Transport Protocols

•Transport layer, sender side: Receives message from higher layers, divides
into packets, assigns sequence #

•Reliable transport (connection-oriented) can be built on top of connection-
oriented or connectionless networks

• When a connectionless network is used the transport layer re-assembles messages in order at the
receiving end.

•Most common transport protocols: TCP/IP

Higher Level Protocols

• Session layer: rarely supported

• Provides dialog control;

• Keeps track of who is transmitting

• Presentation: Cares about the meaning of the data

•Record format, encoding schemes, mediates between different

internal representations

•Application: Originally meant to be a set of basic services; now holds

applications and protocols that don’t fit elsewhere

Middleware Protocols to Support Communication

•Protocols for remote procedure call (RPC)

•Protocols to

• support message-oriented services

• support streaming real-time data, as for multimedia
applications

• support reliable multicast service across a wide-area
network

•These protocols would be built on top of low-level
message passing, as supported by the transport layer.

Middleware Protocols

Figure 4-3. An adapted reference model

for networked communication.

Messages

•Transport layer message passing consists of two types of

primitives: send and receive

•May be implemented in the OS or through add-on libraries

•Messages are composed in user space and sent via a send()

primitive.

•When processes are expecting a message they execute a receive()

primitive.

•Receives are often blocking

Types of Communication

•Persistent versus Transient

•Synchronous versus Asynchronous

•Discrete versus Streaming

Persistent versus Transient

Communication

•Persistent: messages are held by the middleware comm. service

until they can be delivered. (Think email)

• Sender can terminate after executing send

•Receiver will get message next time it runs

•Transient: Messages exist only while the sender and receiver are

running

•Communication errors or inactive receiver cause the message to be

discarded.

• Transport-level communication is transient

Asynchronous v Synchronous

Communication

•Asynchronous: (non-blocking) sender resumes execution as soon
as the message is passed to the communication/middleware
software

•Message is buffered temporarily by the middleware until sent/received

•Synchronous: sender is blocked until

• The OS or middleware notifies acceptance of the message, or

• The message has been delivered to the receiver, or

• The receiver processes it & returns a response.

Figure 4-4. Viewing middleware as an intermediate

(distributed) service in application-level communication.

Evaluation

•Communication primitives that don’t wait for a response are faster,
more flexible, but programs may behave unpredictably since
messages will arrive at unpredictable times.

•Fully synchronous primitives may slow processes down, but
program behavior is easier to understand.

•In multithreaded processes, blocking is not as big a problem
because a special thread can be created to wait for messages.

Discrete versus Streaming Communication

•Discrete: communicating sections exchange discrete messages

•Streaming: one-way communication; a “session” consists of

multiple messages from the sender that are related either by send

order, temporal proximity, etc.

Middleware Communication Techniques

•Remote Procedure Call

•Message-Oriented Communication

•Stream-Oriented Communication

•Multicast Communication

RPC - Motivation

•Low level message passing is based on send and receive primitives.

•Messages lack access transparency.

• Differences in data representation, need to understand message-passing process, etc.

•Programming is simplified if processes can exchange information
using techniques that are similar to those used in a shared memory
environment.

The Remote Procedure Call (RPC) Model

•A high-level network communication interface

•Based on the single-process procedure call model.

•Client request: formulated as a procedure call to a function on

the server.

•Server’s reply: formulated as function return

Conventional Procedure Calls

•Initiated when a process calls a function or procedure

•The caller is “suspended” until the called function completes.

•Arguments & return address are pushed onto the process stack.

•Variables local to the called function are pushed on the stack

Conventional Procedure Call

Figure 4-5. (a) Parameter passing in a local procedure call: the stack

before the call to read. (b) The stack while the called procedure is active.

count = read(fd, buf, nbytes);

Conventional Procedure Calls

•Control passes to the called function

•The called function executes, returns value(s) either through

parameters.

•The stack is popped.

•Calling function resumes executing

Remote Procedure Calls

•Basic operation of RPC parallels same-process procedure calling

•Caller process executes the remote call and is suspended until

called function completes and results are returned.

•Parameters are passed to the machine where the procedure will

execute.

•When procedure completes, results are passed back to the caller

and the client process resumes execution at that time.

Figure 4-6. Principle of RPC between a client and server program.

RPC and Client-Server

•RPC forms the basis of most client-server systems.

•Clients formulate requests to servers as procedure calls

•Access transparency is provided by the RPC mechanism

•Implementation?

Transparency Using Stubs

•Stub procedures (one for each RPC)

•For procedure calls, control flows from

•Client application to client-side stub

•Client stub to server stub

• Server stub to server procedure

•For procedure return, control flows from

• Server procedure to server-stub

• Server-stub to client-stub

•Client-stub to client application

Client Stub

•When an application makes an RPC the stub procedure does the

following:

•Builds a message containing parameters and calls local OS to send the

message

• Packing parameters into a message is called parameter marshalling.

• Stub procedure calls receive() to wait for a reply (blocking receive primitive)

OS Layer Actions

•Client’s OS sends message to the remote machine

•Remote OS passes the message to the server stub

Server Stub Actions

•Unpack parameters, make a call to the server

•When server function completes execution and returns answers to

the stub, the stub packs results into a message

•Call OS to send message to client machine

OS Layer Actions

•Server’s OS sends the message to client

•Client OS receives message containing the reply and passes it to

the client stub.

Client Stub, Revisited

•Client stub unpacks the result and returns the values to the client

through the normal function return mechanism

• Either as a value, directly or

• Through parameters

Passing Value Parameters

Figure 4-7. The steps involved in a doing a remote computation through RPC.

Issues

•Are parameters call-by-value or call-by-reference?

• Call-by-value: in same-process procedure calls, parameter value is pushed on the stack,
acts like a local variable

• Call-by-reference: in same-process calls, a pointer to the parameter is pushed on the stack

•How is the data represented?

•What protocols are used?

Parameter Passing –Value Parameters

•For value parameters, value can be placed in the message and

delivered directly, except …

•Are the same internal representations used on both machines? (char. code,

numeric rep.)

• Is the representation big endian, or little endian? (see p. 131)

Parameter Passing – Reference Parameters

•Consider passing an array in the normal way:

• The array is passed as a pointer

• The function uses the pointer to directly modify the array

values in the caller’s space

•Pointers = machine addresses; not relevant on a remote

machine

•Solution: copy array values into the message; store

values in the server stub, server processes as a normal

reference parameter.

Other Issues

•Client and server must also agree on other issues

•Message format

• Format of complex data structures

• Transport protocol (TCP/IP or UDP?)

Reliable versus Unreliable RPC

•If RPC is built on a reliable transport protocol (e.g., TCP) it will
behave more like a true procedure call.

•On the other hand, programmers may want a faster, connectionless
protocol (e.g., UDP) or the client/server system may be on a LAN.

•How does this affect returned results?

Asynchronous RPC

•Allow client to continue execution as soon as the RPC is
issued and acknowledged, but before work is completed

•Appropriate for requests that don’t need replies, such as a print request, file
delete, etc.

•Also may be used if client simply wants to continue doing something else
until a reply is received (improves performance)

•What are the problems with unreliable, asynchronous RPC?

Synchronous RPC

• Figure 4-10. (a) The interaction between client and server in a traditional RPC.

Asynchronous RPC

• Figure 4-10. (b) The interaction using asynchronous RPC.

Asynchronous RPC

• Figure 4-11. A client and server interacting through
two asynchronous RPCs.

Figure 4-4. Viewing middleware as an intermediate

(distributed) service in application-level communication.

Synchronous or Asynchronous?

Message Oriented Communication

•RPC support access transparency, but aren’t always appropriate

•Message-oriented communication is more flexible

•Built on transport layer protocols.

Sockets

•A communication endpoint used by applications to write and read

to/from the network.

•Sockets provide a basic set of primitive operations

•Sockets are an abstraction of the actual communication endpoint

used by local OS

•Socket address: IP# + port#

Primitive Meaning

Socket Create new communication end point

Bind Attach a local address to a socket

Listen Willing to accept connections (non-

blocking)

Accept Block caller until connection request

arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

How a Server Uses Sockets

System Calls

• Socket

• Bind

• Listen

• Accept

• Read

• Write

• Close

Meaning

• Create socket descriptor

• Bind local IP address/

port # to the socket

• Place in passive mode,

set up request queue

• Get the next message

• Read data from the
network

• Write data to the network

• Terminate connection

Repeat accept/close &

read/write cycles

How a Client Uses Sockets

System Calls

• Socket

• Connect

• Write

• Read

• Close

Meaning

• Create socket descriptor

• Connect to a remote
server

• Write data to the network

• Read data from the
network

• Terminate connection

Repeat read/write

cycle as needed

Figure 4-15. Connection-oriented communication pattern using sockets.

Socket Communication

•Using sockets, clients and servers can set up a connection-oriented
communication session.

•Servers execute first four primitives (socket, bind, listen, accept)
while clients execute socket and connect primitives)

•Then the processing is client/write, server/read, server/write,
client/read, all close connection.

Message-Passing Interface (MPI)

•Sockets provide a low-level (send, receive) interface to wide-area
(TCP/IP-based) networks

•Distributed systems that run on high-speed networks in high-
performance cluster systems need more advanced protocols

•A need to be hardware/platform independent eventually led to the
development of the MPI standard for message passing.

MPI

•Designed for parallel applications using transient communication

•Assumes communication is among a group of processes that know

about each other

•Assign groupID to group, processID to each process in a group

•(groupID, processID) serves as an address

Message Primitives

Message-Oriented Persistent Communication

•Processes communicate through message queues

• sender appends to queue, receiver removes from queue

•MPI and sockets support transient communication, message
queuing allows messages to be stored temporarily (minutes versus
milliseconds).

•Neither the sender nor receiver needs to be on-line when the message is
transmitted.

•Designed for messages that take minutes to transmit.

Figure 4-17. Four combinations for loosely-coupled communications

using queues.

Message-Queuing Model

General Architecture of a Message-Queuing System

Message Brokers

Stream-Oriented Communication

•RPC, RMI, message-oriented communication are based on the
exchange of discrete messages

• Timing might affect performance, but not correctness

•In stream-oriented communication the message content must be
delivered at a certain rate, as well as correctly.

• e.g., music or video

Data Streams

•Data stream = sequence of data items

•Can apply to discrete, as well as continuous media

•Audio and video require continuous data streams between file and

device.

•Asynchronous transmission mode: the order is important, and data is
transmitted one after the other. (file trans.)

• Synchronous transmission mode transmits each data unit with a guaranteed
upper limit to the delay for each unit. (sensors)

• Isochronous transmission mode have a maximum and minimum delay.
(video & audio)

• Not too slow, but not too fast either

•Simple streams have a single data sequence

•Complex streams have several substreams, which must be

synchronized with each other; for example a movie with

• One video stream

• Two audio streams (for stereo)

• One stream with subtitles

Streams and Quality of Service

1. The required bit rate at which data should be transported.

2. The maximum delay until a session has been set up (i.e., when an

application can start sending data).

3. The maximum end-to-end delay (i.e., how long it will take until a

data unit makes it to a recipient).

4. The maximum delay variance.

5. The maximum round-trip delay.

Data Stream

Figure 4-26. A general architecture for streaming stored multimedia data over

a network.

