Chapter 4: Communication

Introduction

® In a distributed system, processes run on different machines.

® Processes can only exchange information through message passing.
® harder to program than shared memory communication

® Successful distributed systems depend on communication models that hide or
simplify message passing

Overview

® Message-Passing Protocols

® OSI reference model
® TCP/IP

® Higher level communication models

® Remote Procedure Call (RPC)
® Message-Oriented Middleware (time permitting)

® Data Streaming (time permitting)

Introduction

® A communication network provides data exchange between two (or more) end
points.

® In a computer network, the end points of the data exchange are computers and/or
terminals. (nodes, sites, hosts, etc., ...)

Circuit Switching vs Packet Switching

® Circult switching iIs connection-oriented (think traditional telephone system)
® Establish a dedicated path between hosts

® Data can flow continuously over the connection

® Packet switching divides messages into fixed size units (packets) which are
routed through the network individually.

® different packets in the same message may follow different routes.

Protocols

® A protocol is a set of rules that defines how two entities interact.
® For example: HTTP, FTP, TCP/IP

® Layered protocols have a hierarchical organization

® Conceptually, layer n on one host talks directly to layer n on the other
host, but in fact the data must pass through all layers on both machines.

Open Systems Interconnection Reference Model
(OSI)

® Supports communication between open systems

® Divides issues into 7 levels (layers) from most concrete to most
abstract

® Each layer provides an interface (set of operations) to the layer
Immediately above

® Defines functionality — not specific protocols

Layered Protocols (1)

T T

Application <«
Highlevel 7> PRIl | |

Create message, 6 > Presentation D ittt > 6
string of bits | |

: Session e e > 5
Establish Comm. 5> I . | I
ransport protoco
Create packets 4-> Transport I i R RO e e - » I 4
- Network protocol
Network routing 3-> A | PO . - 0,0 0 S > I 3
Add header/footer tag e Data link protocol | .
+ checksum 2> Data link 2

Transmit bits via 1> Physical --------1- e > 1
comm. medium (e.g.
Copper, Fiber,

wireless)

Network

Figure 4-1. Layers, interfaces, and protocols
In the OSI model.

— Data link layer header

— Network layer header

— Transport layer header

— Session layer header

— Presentation layer header

— Application layer header

layer trailer

S

i

Bits that actually appear on the network

Figure 4-2. A typical message as It appears on the network

| ower-level Protocols

® Physical: standardizes electrical, mechanical, and
signaling interfaces; e.g.,
® # of volts that signal 0 and 1 bits
® # of bits/sec transmitted
® Plug size and shape, # of pins, etc.

® Data Link: provides low-level error checking
® Appends start/stop bits to a frame
® Computes and checks checksums
® Network: routing (generally based on IP)
® IP packets need no setup
® Each packet in a message is routed independently of the others

Transport Protocols

® Transport layer, sender side: Receives message from higher layers, divides
Into packets, assigns sequence #

® Reliable transport (connection-oriented) can be built on top of connection-
oriented or connectionless networks

® When a connectionless network is used the transport layer re-assembles messages in order at the
receiving end.

® Most common transport protocols: TCP/IP

Higher Level Protocols

® Session layer: rarely supported
® Provides dialog control;

® Keeps track of who is transmitting

® Presentation: Cares about the meaning of the data

® Record format, encoding schemes, mediates between different
Internal representations

® Application: Originally meant to be a set of basic services; now holds
applications and protocols that don’t fit elsewhere

Middleware Protocols to Support Communication

® Protocols for remote procedure call (RPC)

® Protocols to
® support message-oriented services

® support streaming real-time data, as for multimedia
applications

® support reliable multicast service across a wide-area
network

® These protocols would be built on top of low-level
message passing, as supported by the transport layer.

Middleware Protocols

Application protocol
Application I i B s > I
Middleware protocol
Middleware | I > |
Transport protocol
Transport I il e > I
——______Network protocol________,
Network l < > I
________ Data link protocol _______.
Data link i >
| Physical protocol I
Physical I >
Network

Figure 4-3. An adapted reference model
for networked communication.

Messages

® Transport layer message passing consists of two types of
primitives: send and receive

® May be implemented in the OS or through add-on libraries

® Messages are composed in user space and sent via a send()
primitive.

®*When processes are expecting a message they execute a receive()

primitive.

® Receives are often blocking

Types of Communication

® Persistent versus Transient

® Synchronous versus Asynchronous

® Discrete versus Streaming

Persistent versus Transient
Communication

® Persistent: messages are held by the middleware comm. service
until they can be delivered. (Think email)

® Sender can terminate after executing send

® Receiver will get message next time it runs

® Transient: Messages exist only while the sender and receiver are
running

® Communication errors or inactive receiver cause the message to be
discarded.

® Transport-level communication is transient

Asynchronous v Synchronous
Communication

® Asynchronous: (non-blocking) sender resumes execution as soon
as the message Is passed to the communication/middleware
software

® Message is buffered temporarily by the middleware until sent/received

® Synchronous: sender is blocked until
® The OS or middleware notifies acceptance of the message, or
® The message has been delivered to the receiver, or
® The receiver processes It & returns a response.

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/
Request \ /

Transmission
interrupt
V Storage]V

facility
\ / Reply
Server Time —>

Figure 4-4. Viewing middleware as an intermediate
(distributed) service in application-level communication.

Evaluation

® Communication primitives that don’t wait for a response are faster,
more flexible, but programs may behave unpredictably since
messages will arrive at unpredictable times.

® Fully synchronous primitives may slow processes down, but
program behavior Is easier to understand.

® In multithreaded processes, blocking Is not as big a problem
because a special thread can be created to walit for messages.

Discrete versus Streaming Communication

® Discrete: communicating sections exchange discrete messages

® Streaming: one-way communication; a “session’ consists of
multiple messages from the sender that are related either by send
order, temporal proximity, etc.

Middleware Communication Techniques

® Remote Procedure Call
® Message-Oriented Communication
® Stream-Oriented Communication

® Multicast Communication

RPC - Motivation

® Low level message passing Is based on send'and rece/ve primitives.

® Messages lack access transparency.
® Differences in data representation, need to understand message-passing process, etc.

® Programming is simplified if processes can exchange information
using techniques that are similar to those used in a shared memory
environment.

The Remote Procedure Call (RPC) Model

® A high-level network communication interface
® Based on the single-process procedure call model.

® Client request: formulated as a procedure call to a function on
the server.

®Server’s reply: formulated as function return

Conventional Procedure Calls

® Initiated when a process calls a function or procedure

®The caller is “suspended” until the called function completes.

® Arguments & return address are pushed onto the process stack.

®Variables local to the called function are pushed on the stack

Conventional Procedure Call

Stack pointer count = read(fd, buf, nbytes);

Main program's Main program's

local variables local variables
* nbytes

buf

fd

return address

read's local
variables

(a) (b)

Figure 4-5. (a) Parameter passing in a local procedure call: the stack
before the call to read. (b) The stack while the called procedure is active.

Conventional Procedure Calls

® Control passes to the called function

® The called function executes, returns value(s) either through
parameters.

® The stack Is popped.
® Calling function resumes executing

Remote Procedure Calls

® Basic operation of RPC parallels same-process procedure calling

® Caller process executes the remote call and is suspended until
called function completes and results are returned.

® Parameters are passed to the machine where the procedure will
execute.

®*When procedure completes, results are passed back to the caller
and the client process resumes execution at that time.

Wait for result

Clionl — i
/ N\
Call remote Return
procedure from call
Request Reply
Server -—-—-----------— e— e m o

Call local procedure Time ——>»
and return results

Figure 4-6. Principle of RPC between a client and server program.

RPC and Client-Server

®* RPC forms the basis of most client-server systems.

® Clients formulate requests to servers as procedure calls
® Access transparency is provided by the RPC mechanism
® Implementation?

Transparency Using Stubs

® Stub procedures (one for each RPC)

® For procedure calls, control flows from
® Client application to client-side stub
® Client stub to server stub

® Server stub to server procedure
® For procedure return, control flows from
® Server procedure to server-stub

® Server-stub to client-stub
® Client-stub to client application

Client Stub

®*When an application makes an RPC the stub procedure does the
following:

® Builds a message containing parameters and calls local OS to sendthe
message

® Packing parameters into a message Is called parameter marshalling.
® Stub procedure calls recerve() to wait for a reply (blocking receive primitive)

OS Layer Actions

® Client’s OS sends message to the remote machine

® Remote OS passes the message to the server stub

Server Stub Actions

® Unpack parameters, make a call to the server

®*When server function completes execution and returns answers to
the stub, the stub packs results into a message

® Call OS to send message to client machine

OS Layer Actions

®Server’s OS sends the message to client

® Client OS receives message containing the reply and passes it to
the client stub.

Client Stub, Revisited

® Client stub unpacks the result and returns the values to the client
through the normal function return mechanism

® Either as a value, directly or
® Through parameters

Passing Value Parameters

Client machine Server machine
Client process | Server process
1. Client call to ;
procedure Implementation 6. Stub makes
of add local call to "add"
— Server stub —
—1_k=add(ij) — Client stub o L k=addllj) —
AT i // \ AT M
proc: "add proc: "add Stub "
int__val() 2. Stub builds int__val() 9 SUHNPAGKS
int: val()) message int: val()) message
A
. proc: "add" 4. Server OS
Client OS |nt val() Server OS hands message
_ int:_val(j)) to server stub

3. Message is sent
across the network

Figure 4-7. The steps involved in a doing a remote computation through RPC.

Issues

® Are parameters call-by-value or call-by-reference?

® Call-by-value: in same-process procedure calls, parameter value is pushed on the stack,
acts like a local variable

® Call-by-reference: in same-process calls, a pointer to the parameter is pushed on the stack

®How Is the data represented?
®What protocols are used?

Parameter Passing —Value Parameters

® For value parameters, value can be placed in the message and
delivered directly, except ...

® Are the same internal representations used on both machines? (char. code,
numeric rep.)

® Is the representation big endian, or little endian? (see p. 131)

Parameter Passing — Reference Parameters

® Consider passing an array in the normal way:
® The array Is passed as a pointer

® The function uses the pointer to directly modify the array
values in the caller’s space

® Pointers = machine addresses; not relevant on a remote
machine

® Solution: copy array values into the message; store
values In the server stub, server processes as a normal
reference parameter.

Other Issues

® Client and server must also agree on other issues
® Message format

® Format of complex data structures
® Transport protocol (TCP/IP or UDP?)

Reliable versus Unreliable RPC

®If RPC is built on a reliable transport protocol (e.g., TCP) it will
behave more like a true procedure call.

® On the other hand, programmers may want a faster, connectionless
protocol (e.g., UDP) or the client/server system may be on a LAN.

® How does this affect returned results?

Asynchronous RPC

®* Allow client to continue execution as soon as the RPC Is
Issued and acknowledged, but before work is completed

® Appropriate for requests that don’t need replies, such as a print request, file
delete, etc.

® Also may be used if client simply wants to continue doing something else
until a reply is received (improves performance)

® What are the problems with unreliable, asynchronous RPC?

Synchronous RPC

Client Wait for result

3

Call remote
procedure

5

Return
from call

Request

Server Call local procedure 1'Mme —»
and return results

(@)

® Figure 4-10. (a) The interaction between client and server in a traditional RPC.

Asynchronous RPC

Client Wait for acceptance

/\ 4 5

Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

(b)

* Figure 4-10. (b) The interaction using asynchronous RPC.

Asynchronous RPC

Wait for Interrupt client
acceptance
Client ___‘3___ \
/ X
Call remote ?eturn ” o
r r rom ca eturn
pLocosue results Acknowledge
Accept
Request request
Server --r=rssssomm—=- s
Call local procedure \ Time —»
Call client with
one-way RPC

® Figure 4-11. A client and server interacting through
two asynchronous RPCs.

Synchronous or Asynchronous?

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/
Request \ /

Transmission
interrupt
V Storage /V

facility
\ / Reply
Server Time —>

Figure 4-4. Viewing middleware as an intermediate
(distributed) service in application-level communication.

Message Oriented Communication

® RPC support access transparency, but aren’t always appropriate

® Message-oriented communication is more flexible

® Built on transport layer protocols.

Sockets

® A communication endpoint used by applications to write and read
to/from the network.

® Sockets provide a basic set of primitive operations

® Sockets are an abstraction of the actual communication endpoint
used by local OS

® Socket address: IP# + port#

Primitive |Meaning

Socket Create new communication end point

Bind Attach a local address to a socket

Listen Willing to accept connections (non-
blocking)

Accept Block caller until connection request
arrives

Connect |Actively attempt to establish a connection

Send Send some data over the connection

Recelve |Recelve some data over the connection

Close

Release the connection

How a Server Uses Sockets

System Calls Meaning

e Socket « Create socket descriptor

* Bind * Bind local IP address/
port # to the socket

e Listen « Place in passive mode,

- set up request queue
« Accept Repeat accept/close & ° Get the next message

« Read read/write cycle * Read data from the

Close Write data to the network
Terminate connection

How a Client Uses Sockets

System Calls Meaning

e Socket « Create socket descriptor

« Connect « Connect to a remote
server

 Write = Write data to the network

Repeat read/write

Read Q‘ﬁas neede « Read data from the
network

Close Terminate connection

Server g ﬁ
socket —» bind ¥ listen —» accept read —» wrjte —» close

A A u
Synchronization point —i ;‘ Communication !
Y .f ¥
socket »-connect—» write ———®» read ¥ close

Client

Figure 4-15. Connection-oriented communication pattern using sockets.

Socket Communication

® Using sockets, clients and servers can set up a connection-oriented
communication session.

® Servers execute first four primitives (socket, bind, listen, accept)
while clients execute socket and connect primitives)

® Then the processing is client/write, server/read, server/write,
client/read, all close connection.

Message-Passing Interface (MPI)

® Sockets provide a low-level (send, receive) interface to wide-area
(TCP/IP-based) networks

® Distributed systems that run on high-speed networks in high-
performance cluster systems need more advanced protocols

® A need to be hardware/platform independent eventually led to the
development of the MPI standard for message passing.

MPI

® Designed for parallel applications using transient communication

® Assumes communication is among a group of processes that know
about each other

® Assign grouplD to group, processiD to each process in a group

° (grouplD, processID) serves as an address

Message Primitives

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI _isend Pass reference to outgoing message, and continue
MPI _issend Pass reference to outgoing message, and wait until receipt starts
MPI _recv Receive a message; block if there is none
MPI _irecv Check if there is an incoming message, but do not block

Message-Oriented Persistent Communication

® Processes communicate through message queues
® sender appends to queue, receiver removes from queue

®* MPI and sockets support transient communication, message
queuing allows messages to be stored temporarily (minutes versus
milliseconds).

® Neither the sender nor receiver needs to be on-line when the message is
transmitted.

® Designed for messages that take minutes to transmit.

Sender Sender Sender Sender
running running passive passive

<[l <
11T <«

<«
[T

Receiver Receiver Receiver Receiver
running passive running passive
(a) (b) (c) (d)

Figure 4-17. Four combinations for loosely-coupled communications
using queues.

Message-Queuing Model

Primitive | Meaning

Put . Append a message to a specified queue
Get - Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block

Notify Install a handler to be called when a message is put into the specified queue

General Architecture of a Message-Queuing System

Sender A

Application

Application

Receive
ueue —
= M e T <—j
essage <>
| II——‘\
Send queue \(

N] T >
. Application
[
= \ II | I‘J
(—b 1] :] [T1T=
f [* Receiver B
Application < 1N

Router

Message Brokers

Repository with
conversion rules
Source client Message broker and programs Destination client
\ \ / /
\ \ | /

Broker
o=
[T AN
— EI g Queuing &
M == layer "
Qs ? Qs f 0S
)

Network

Stream-Oriented Communication

*RPC, RMI, message-oriented communication are based on the
exchange of discrete messages

® Timing might affect performance, but not correctness

® In stream-oriented communication the message content must be
delivered at a certain rate, as well as correctly.

®e.g., music or video

Data Streams

® Data stream = sequence of data items

® Can apply to discrete, as well as continuous media

® Audio and video require continuous data streams between file and
device.

® Asynchronous transmission mode: the order is important, and data is
transmitted one after the other. (file trans.)

® Synchronous transmission mode transmits each data unit with a guaranteed
upper limit to the delay for each unit. (sensors)

® Isochronous transmission mode have a maximum and minimum delay.
(video & audio)

® Not too slow, but not too fast either

® Simple streams have a single data sequence

® Complex streams have several substreams, which must be
synchronized with each other; for example a movie with

® One video stream

® Two audio streams (for stereo)

® One stream with subtitles

Streams and Quality of Service

1. The required bit rate at which data should be transported.

2. The maximum delay until a session has been set up (i.e., when an
application can start sending data).

3. The maximum end-to-end delay (i.e., how long it will take until a
data unit makes It to a recipient).

4. The maximum delay variance.
5. The maximum round-trip delay.

Data Stream

: . _ Stream synchronization
Multimedia server Client /

Stream / | Stream
@ ,L de?ader decoder
QoS QoS T

Co_mprgssed control control
multimedia data T

Network

Figure 4-26. A general architecture for streaming stored multimedia data over
a network.

